[2]

IB_2		Phys	${f sics}$ ${f SL}$	Friday 20.9.2022
		Tot:	/ 32 marks	Name:
Prol	blem 1			$[\hspace{0.2in} /10 \hspace{0.2in} marks \hspace{0.2in}]$
(a)	Describe the phenomenon	of natural rad	ioactive decay.	[3]
(b)	A nucleus of americium (Np-237) in the following in		11) decays into a nu	cleus of neptunium-237
		²⁴¹ ₉₅ Am	$\rightarrow {}^{237}_{X}\text{Np} + {}^{4}_{2}\alpha$	
	(i) State the value of X .			[1]

(ii) Explain in terms of mass why energy is released in the reaction in (b).

(this question continues next page)

•			•
т	1. C.11. In . 1.4		
1	the following data are available.		
	Nuclide	Binding energy per nucleon / MeV	
	americium-241	7.54	
	neptunium-237	7.58	
	helium-4	7.07	
D	Determine the energy released in	the reaction in (b).	[
•			•
•			•
			•
lor	m 2	I /	10 m
161.	11 2	[/	10 111
Th	ne mass of a nucleus of pluton	$\lim_{y \to 0} {239 \choose 94} Pu$ is 238.990396u. Deduce that	the
1)11	nding energy per nucleon for pl	utomum is 7.6 MeV.	[
			• •

(this question continues next page)

The graph shows the variation with nucleon number A of the binding energy per nucleon.

Plutonium ($^{239}_{94}$ Pu) undergoes nuclear fission according to the reaction given below.

$$^{239}_{94}$$
Pu + $^{1}_{0}$ n $\rightarrow ^{91}_{38}$ Sr + $^{146}_{56}$ Ba + x^{1}_{0} n

Calculate the number x of neutrons produced.

[1]

(ii) Use the graph to estimate the energy released in this reaction. [2]

(this question continues next page)

r	r	o	t)1	15	۶.]	3	y	r	e	f	21	re	er	10	се	n e 1 n	tc)	tŀ	he	e	ŗ	pı	r(0	p	e	r	t	i	e	S	(0	f	t	h																					
																																																						•						
																																												•						•				•						
																																												•										•						
																												•																•																
																																												•										•						

Problem 3

/ 8 marks]

Let us consider a sample $1.0~\mathrm{kg}$ of strontium-94 (Sr-94).

Sr-94 is radioactive and undergoes beta-minus decay into a daughter nuclide X.

The reaction for this decay is

 ${f 1}$) complete the reaction (providing the missing information)

[4]

The graph shows the variation with time of the mass of Sr-94 remaining in the samp

2)

(ii) State the half-life of Sr-94.

(iii) Calculate the mass of Sr-94 remaining in the sample after 10 minutes.

Four paper1 questions / 4 marks] A detector, placed close to a radioactive source, detects an activity of 260 Bq. The average background activity at this location is 20 Bq. The radioactive nuclide has a half-life of 9 hours.

What activity is detected after 36 hours?

A. 15 Bq

 $\mathbf{Q}\mathbf{1}$

B. 16 Bq

C. 20 Bq

D. 35 Bq

$\mathbf{Q2}$

Which of the following statements best describes the random nature of radioactive decay?

- A. The decaying nucleus emits either an α -particle, or a β -particle or a γ -ray photon.
- B. The type of radiation emitted by the decaying nucleus cannot be predicted.
- C. The time at which a particular nucleus will decay cannot be predicted.
- D. The decay of a nucleus is unaffected by environmental conditions.

$\mathbf{Q3}$

A freshly prepared sample contains 4.0µg of iodine-131. After 24 days, 0.5µg of iodine-131 remain. The best estimate of the half-life of iodine-131 is

- A. 8 days.
- B. 12 days.
- C. 24 days.
- D. 72 days.

$\mathbf{Q4}$

The average binding energy per nucleon of the $^{15}_{8}\text{O}$ nucleus is 7.5 MeV. What is the total energy required to separate the nucleons of one nucleus of ${}^{15}_{8}$ O?

- A. 53 MeV
- 60 MeV B.
- C. 113 MeV
- D. 173 MeV