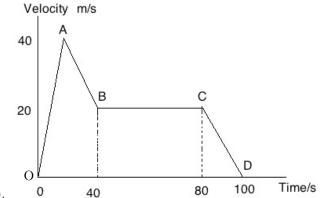
Exercise

Week of september23

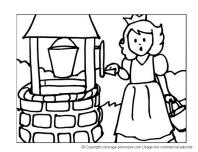
Physics IB₁

Subjet: Kinematics

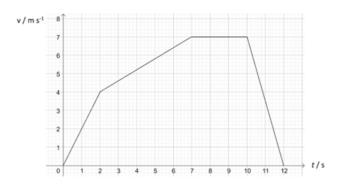

Name : _____

Problem 1

The graph on the right shows the velocity versus time of a bus moving along a straight road over a period of 100 seconds.


Find:

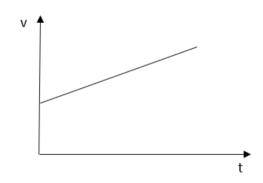
- i) The acceleration during the first 20 seconds (O to A).
- ii) The *distance* moved during the 40 first seconds (O to B).
- iii) The average speed of the bus.


Problem 2

A stone is dropped down a well and a splash is heard 2.4 s later. During the fall, the stone has a constant acceleration. The magnitude of this acceleration as about $10\frac{m}{m^2}$ How far is it from the top of the well to the surface of the water?

Problem 3 (Answer by A,B,C or D)

The graph shows the variation with time t of the velocity v of a car traveling along a straight and level road.

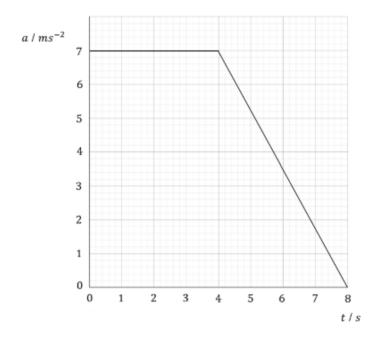


What time does it take for the car to travel a distance of $31.5\,m$ from t=0?

- A. 2s
- B. 7s
- C. 10 s
- D. 12s

Problem 4 (Answer by A,B,C or D)

The graph shows the variation of velocity v with time t of a car.

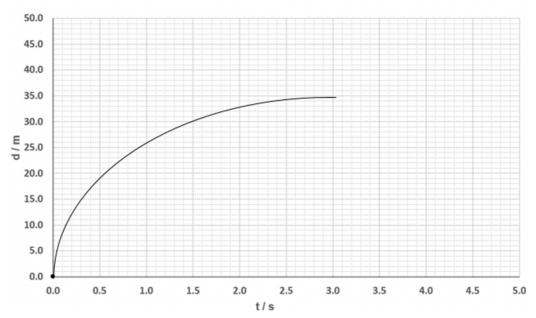


Assuming there were numerical values on the axes, which of the following could be deduced from the graph?

- I. Displacement
- II. Acceleration
- III. Change in velocity
- A. I only
- B. II only
- C. I and II only
- $\mathrm{D.} \quad \mathrm{I,\,II\,and\,III}$

Problem 5 (Answer by A,B,C or D)

The graph below shows how the acceleration of an object a varies with time t.

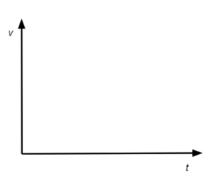

What is the change in speed of the object?

- A. $7.0 \, m \, s^{-1}$
- ${\rm B.}~~28.0\,m\,s^{-1}$
- C. $42.0 \, m \, s^{-1}$
- ${\rm D.}~~56.0\,m\,s^{-1}$

Problem 6 (Answer by A,B,C or D)

(a) Define distance. [1]

(b) An object moves in a straight line on a level road. The variation of the object's distance d with time t is shown on the graph below.


(i) Describe the motion of the object between $t=0.5\,s$ and $t=1.0\,s$.

[1]

(ii) Calculate the instantaneous speed of the object at $t=0.5\,s.$

[2]

(iii) On the axes below, sketch a possible graph of the variation of velocity v of the object with time t. There is no need to add values to the axes.

(iv) Determine the direction of the change in momentum of the object during the motion.

[2]