1) Force and acceleration on an inclined plane

For example what is the acceleration if m = 2 kg

$$\theta = 46^{\circ}$$

$$f = 3N$$

2) Definition of Momentum of a body
Definition of Total Momentum of a system
Concept of(pseudo-) isolated body or system
Conservation of the total momentum
Applications (collisions, explosions..)

$$\vec{P}_{initial} = \vec{P}_{final}$$

$$m_A \vec{v}_A + m_B \vec{v}_B = m_A \vec{v}_A' + m_B \vec{v}_B'$$

3) Relation between impulse and momentum Relation between impulse and average force Using graphics of F vs time

Question:

A body of mass m_1 (100g) is moving downward along an inclined plane of angle $\theta = 40^{\circ}$.

There is a constant friction force of 0.5N between A and B.

and no more friction from B to C (BC can be considered as horizontal).

- 1) Show that the acceleration of m_1 between A and B has magnitude $a = 1.43 \text{ms}^{-2}$.
- 2) If m_1 started at the rest form position A, what is its speed at B?
- 3) An other object of mass m_2 (200g) is placed somewhere between B and C.

After m_1 collides with m_2 , booth will continue together with a common final speed v_f . Show that $v_f = 0.476 \text{ms}^{-1}$.