
Momentum and collision of identical balls

(a)	State Newton's third law.	[1]
(b)	State the law of conservation of momentum.	[2]
and l	diagram below shows two identical balls A and B on a horizontal surface. Ball B is at rest ball A is moving with speed V along a line joining the centres of the balls. The mass of each is M .	
	Before collision A B	
	ing the collision of the balls, the magnitude of the force that ball A exerts on ball B is $F_{\rm AB}$ the magnitude of the force that ball B exerts on ball A is $F_{\rm BA}$.	
(c)	On the diagram below, add labelled arrows to represent the magnitude and direction of the forces $F_{\rm AB}$ and $F_{\rm BA}$.	[3]
	During the collision A B	

The balls are in contact for a time Δt . After the collision, the speed of ball A is $+v_A$ and the speed of ball B is $+v_B$ in the directions shown.

As a result of the collision, there is a change in momentum of ball A and of ball B.

(d)	Use Newton's second law of motion to deduce an expression relating the forces during the collision to the change in momentum of	acting
	(i) ball B.	[2]
	(ii) ball A.	[2]
(e)	Apply Newton's third law and your answers to (d), to deduce that the change in mon of the system (ball A and ball B) as a result of this collision, is zero.	nentum
(f)	Deduce, that if kinetic energy is conserved in the collision, then after the collison will come to rest and ball B will move with speed V .	, ball A <i>[3]</i>