Ex for test1

Total: / 30 marks

ANSWERS

Question 1 [20 marks]

The following graphics shows the velocity of a bicycle walking on a road for t between 0 and 57s

- 1) What is the *velocity* of the bike at $t = 20 \sec ?$ 10 m/s
- 2) Estimate when, for the third time the velocity of the bike reaches 90 km/h? $t \cong 57 \text{s}$
- 3) What is the displacement of the bicycle for $0 \le t \le 30s$? 75+300+75+100=550m
- 5) What is the average velocity of the bike for $0 \le 1 \le 45s$? $V_A = \frac{550 + 50 50 100}{45} = 10 \text{m/s}$
- 6) Complete the table on the right by finding all the accelerations (with correct unit)
- 7) Based on your precedant answers, complete the following graphics

accelerat
$6m/s^2$
$-1.33m/s^2$
$2m/s^2$
$0m/s^2$
$-4m/s^{2}$
$0m/s^2$
$4m/s^2$

$a \pmod{(\mathrm{m}/s^2)}$	(6)											
6 4										(1)		
2				(2)								
	5	10	15	20	(0)		35 z	(0)	15 5	0 5	55 +	
-2	3	10	15	20	25	30	3 0 2	10 4	45 5	0 э	t (secon	.d)
-4		(-1.3	(3)									
-4						(-	-4)					

(1) Newton's second law: $\vec{F}_{\text{tot}} = \cdots$

(2)
$$a = \frac{v_2 - v_1}{t_2 - t_1}$$

Formula:

(3)
$$v_2 = v_1 + at$$
 with $t = t_2 - t_1$

(2)
$$a = \frac{v_2 - v_1}{t_2 - t_1}$$
(3)
$$v_2 = v_1 + at \quad \text{with } t = t_2 - t_1$$
(4)
$$d = v_1 t + \frac{1}{2} a t^2 \quad \text{with } t = t_2 - t_1$$

Question 2 [6 marks]

A motocycle has velocity $v_1 = 18 \text{ km}/h$ at $t_1 = 5s$ and velocity $v_2 = 198 \text{ km}/h$ at $t_2 = 17.5s$

- i) Find the acceleration of the motocycle. By formula (2): $a = \frac{55-5}{17.5-5} = \frac{50}{12.5} = \boxed{4m/s^2}$
- ii) Find the speed of the motocycle 4s after t_1 . By formula (3): $v_2 = 5 + 4 \times 4 = 21m/s$
- iii) Find the distance moved between t_1 and t_2 . By formula (4): $d=5(12.5)+\frac{1}{2}4(12.5)^2$ =62.5+312.5=375m