Exercises

Total:

/ 30 marks

Question 1 [20 marks]

The following graphics shows the velocity of a bicycle walking on a road for t between 0 and 55s

- 1) What is the *velocity* of the bike at $t = 20 \sec$?
- 2) Estimate when, for the third time the velocity of the bike reaches 90 km/h?
- 3) What is the displacement of the bicycle for $0 \le t \le 30 s$?
- **5)** What is the average velocity of the bike for $0 \le 1 \le 45s$?
- 6) Complete the table on the right by finding all the accelerations (with correct unit)
- 7) Based on your precedant answers, complete the following graphics

accelerat

$a \over (\mathrm{m}/s^2)$												
6 4												
2												
	5	10	15	20	25	30	35	40	45	50	55	
2		10	10	20	25	30	33	40	40	30	55	t (second)
-4												

(1) Newton's second law: $\vec{F}_{\text{tot}} = \cdots$

$$(2) a = \frac{v_2 - v_1}{t_2 - t_1}$$

(2)
$$a = \frac{v_2 - v_1}{t_2 - t_1}$$
(3)
$$v_2 = v_1 + at \quad \text{with } t = t_2 - t_1$$
(4)
$$d = v_1 t + \frac{1}{2} a t^2 \quad \text{with } t = t_2 - t_1$$

Question 2 [6 marks]

A motocycle has velocity $v_1 = 18 \text{ km}/h$ at $t_1 = 5s$ and velocity $v_2 = 198 \text{ km}/h$ at $t_2 = 17.5s$

Formula:

- i) Find the acceleration of the motocycle.
- ii) Find the *speed* of the motocycle 4s after t_1 .
- iii) Find the distance moved between t_1 and t_2 .