

Question		Answers	Notes	Total
2	a	<p>Read at least two points correctly and consistently ✓</p> <p>Use $\frac{1}{2} \cdot g \cdot t^2$ with a length interval from two non-consecutive points OR for two (or more) length intervals, using consistent time intervals ✓</p> <p>Correct calculation of g ✓</p>	<p><i>Award [2] max if they use one single length interval of consecutive points.</i></p> <p><i>Award [1] max if they miss to subtract the initial point in their length interval or if they use inconsistent time intervals.</i></p> <p><i>Do not penalize significant figures in the final answer.</i></p>	3

	<p>b</p> <p>Use 10% for delta t^2 ✓</p> <p>Estimate an uncertainty for s using an absolute of 0.5 OR 1 mm AND propagate it to 1/their length interval OR 2/their length interval respectively ✓</p> <p>Add both relative or percentage uncertainties AND calculate the absolute uncertainty ✓</p>	<p>Allow ECF for MP3.</p> <p><i>Do not penalize significant figures in the final answer.</i></p>	3
	<p>c</p> <p>Flash must be so short that blurring is within the absolute uncertainty / error of determination of s ✓</p> <p>(Final) speed is around 2 m s^{-1} and error is about 1 mm so (maximum) duration around $\frac{1}{2000} \text{ s}$ ✓</p>	<p>Award [1] max if they argue that images might merge and state a maximum of 0.025 s (or less).</p> <p>Award [1] max if they use the uncertainty of time and state a time of $(2 \times 0.05 \times 0.05 \text{ s}) = 0.005 \text{ s}$ (or less).</p>	2

Question			Answers	Notes	Total
7.	a	i	equally spaced arrows «by eye» all pointing down ✓ edge effects also shown with arrows ✓		2
7.	a	ii	$E = \frac{V}{d} = \frac{960}{8.0 \times 10^{-3}}$ ✓ $E = 1.2 \times 10^5$ «NC ⁻¹ » ✓		2
7.	b		friction transfers electron(s) to or from drop AND through collisions/ interaction with air molecules in the tube OR through collisions/interaction with wall of tube ✓		1
7.	c	i	weight of oil drop is $\rho_o g V$ ✓ $\frac{F_b}{W} = \frac{\rho_a g V}{\rho_o g V} = \frac{\rho_a}{\rho_o}$ ✓ « $\frac{F_b}{W} = \frac{1}{730} \Rightarrow 1.4 \times 10^{-3}$ OR Ratio of F_b to W is much less than 1 ✓		3

7.	c	ii	Weight vertically down AND electric force vertically up ✓ Of equal length «by eye» ✓		2
7.	c	iii	Mass of drop is $\rho_0 V$ ✓ $qE = (\rho_0 V)g$ ✓ «hence answer»	<i>MP1 must be shown implicitly for credit.</i>	2
7.	c	iv	Negative ✓		1
7.	d	i	Net force is zero ✓ Acceleration of the oil drop is zero ✓ OR For terminal velocity drag must equal weight ✓ $\text{weight} = \rho_0 g V$ and drag = $6\pi\eta rV$ ✓		2

7.	d	ii	$q = \frac{6\pi\eta r\nu}{E} \quad \checkmark$ $q = \frac{6\pi \times 1.60 \times 10^{-5} \times 1.36 \times 10^{-6} \times 1.40 \times 10^{-4}}{1.2 \times 10^5} \quad \checkmark$ $q = 4.79 \times 10^{-19} \text{ «C»} \quad \checkmark$	<i>Answer must be shown to 3+ sf.</i>	3
7.	d	iii	charge is quantized \checkmark so, the charges must be 1e and 2e \checkmark		2