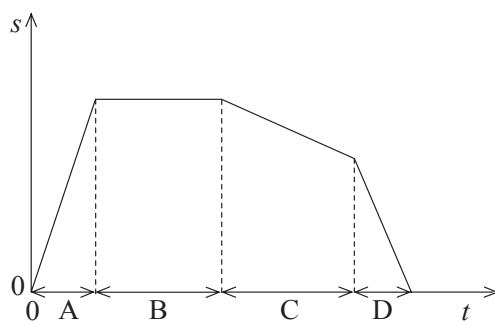


Physics SL

Wednesday 17 December 2025

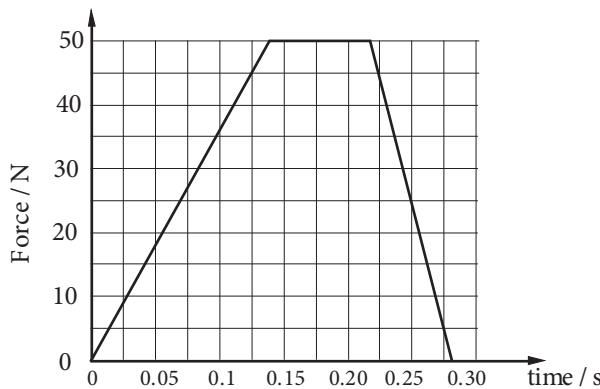
Max Time : 50min.

IB2 Examination


- Paper 1A -

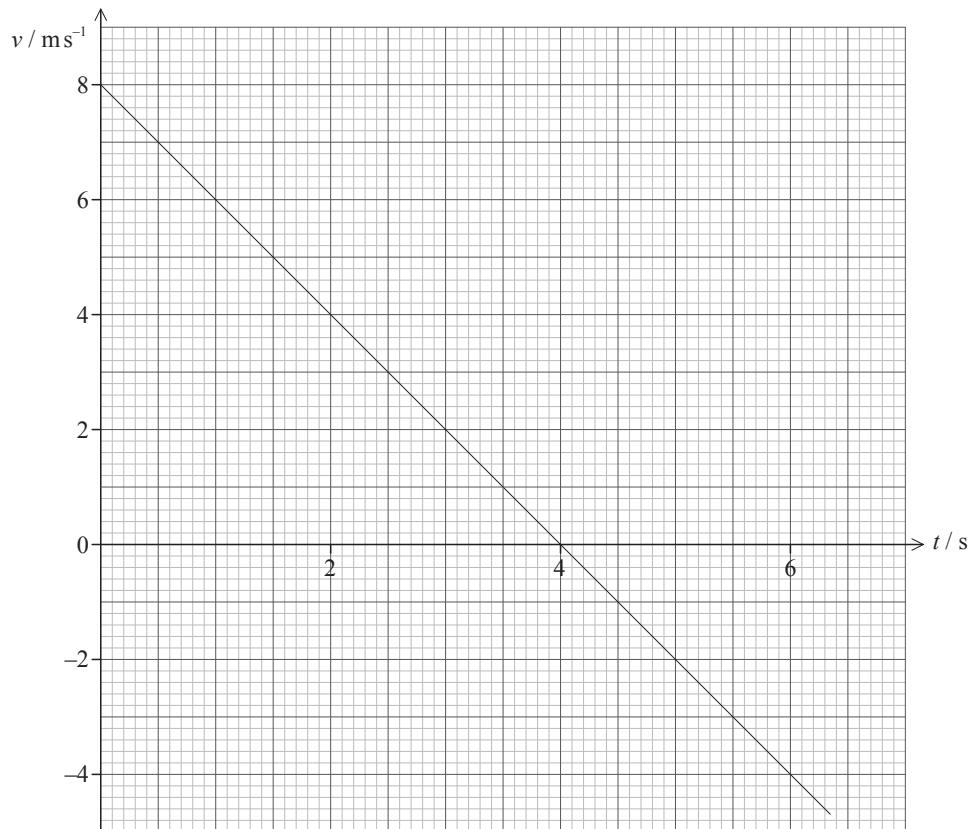
Name: _____

30 IB MCQ


1.

The graph below shows the variation with time t of the displacement s of a car. In which time interval is the speed greatest?

2.


What is the quantity we can know using the *gradients* of the graph below

- A. Impulse
- B. Momentum
- C. Weight
- D. Not any one

3.

The graph below shows the variation with time t of the velocity v of an object moving along a straight line.

The displacement of the object between $t=0\text{ s}$ and $t=6.0\text{ s}$ is

- A. 2.0 m.
- B. 12 m.
- C. 20 m.
- D. 24 m.

4.

An object of mass m is initially at rest. An impulse I acts on the object. The change in kinetic energy of the object is

A. $\frac{I^2}{2m}$

B. $\frac{I^2}{m}$

C. I^2m .

D. $2I^2m$.

5.

Two trolleys P and Q, are connected by a rubber band. They are at rest on a horizontal surface. The mass of Q is twice that of P. The trolleys are pulled apart so that the band is stretched and are then released.

The ratio $\frac{\text{magnitude of initial acceleration of trolley P}}{\text{magnitude of initial acceleration of trolley Q}}$ is

A. $\frac{1}{4}$.

B. $\frac{1}{2}$.

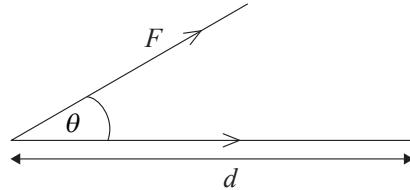
C. 1.

D. 2.

6.

An object of mass m falls from rest in a vacuum. As the object falls it loses an amount E of gravitational potential energy. The speed of the object is then

A. $\sqrt{\frac{2E}{m}}$.

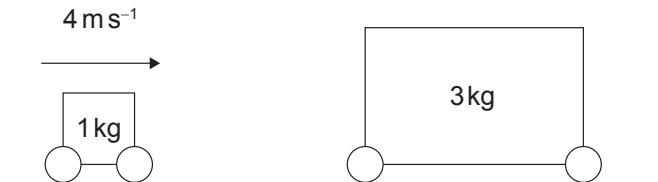

B. $\sqrt{\frac{m}{2E}}$.

C. $\frac{2E}{m}$.

D. $\frac{m}{2E}$.

7.

The point of action of a constant force F is displaced a distance d . The angle between the force and the direction of the displacement is θ , as shown below.



Which **one** of the following is the correct expression for the work done by the force?

- A. Fd
- B. $Fd \sin\theta$
- C. $Fd \cos\theta$
- D. $Fd \tan\theta$

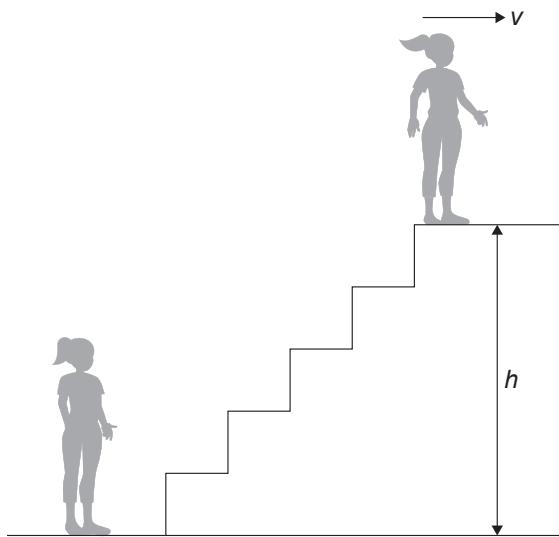
8.

A cart of mass 1 kg moving at 4 m s^{-1} collides with a stationary cart of mass 3 kg.

After the collision the carts stick together.

What is $\frac{\text{kinetic energy after the collision}}{\text{kinetic energy before the collision}}$?

- A. $\frac{1}{16}$
- B. $\frac{1}{8}$
- C. $\frac{1}{4}$
- D. $\frac{1}{2}$

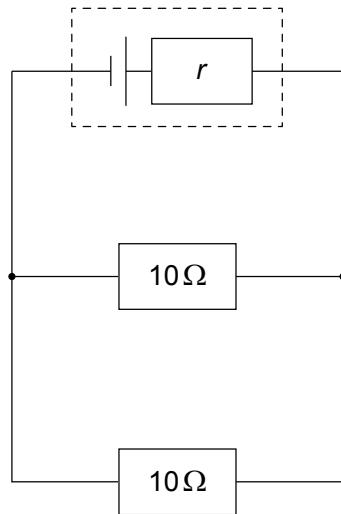

9.

The tension in a horizontal spring is directly proportional to the extension of the spring. The energy stored in the spring at extension x is E . What is the work done by the spring when its extension changes from x to $\frac{x}{4}$?

- A. $\frac{E}{16}$
- B. $\frac{E}{4}$
- C. $\frac{3E}{4}$
- D. $\frac{15E}{16}$

10.

A student of mass m initially at rest takes t seconds to run up stairs of height h . At the top of the stairs the student has a velocity v .

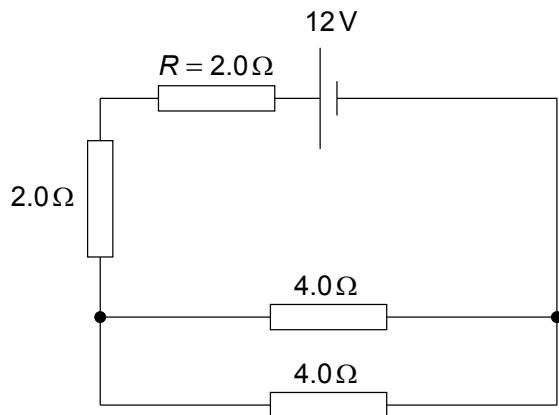


What is the average power supplied by the student during the climb?

- A. $\frac{mgh}{t}$
- B. $\frac{m(gh + \frac{1}{2}v^2)}{t}$
- C. $\frac{m(gh - \frac{1}{2}v^2)}{t}$
- D. mgv

11.

A cell has an emf of 17.0V and internal resistance r . It is connected to two 10Ω external resistors.

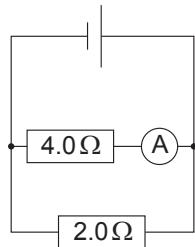

There is a current of 1.5A in one of the external resistors.

What is the value of r ?

- A. 0.34Ω
- B. 0.50Ω
- C. 0.67Ω
- D. 1.3Ω

12.

A network of three resistors is connected to a cell of emf 12 V and internal resistance R of 2.0Ω as shown.

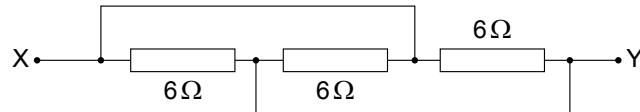


What is the current in one of the 4.0Ω resistors?

- A. 0.5 A
- B. 1.0 A
- C. 1.2 A
- D. 2.0 A

13.

A 2.0Ω and a 4.0Ω resistor are connected in parallel to a cell with negligible internal resistance. An ammeter placed in the circuit as shown measures a current of 1.0A.

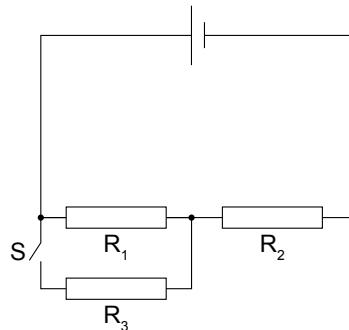


What is the current passing through the 2.0Ω resistor?

- A. 0.5 A
- B. 1.0 A
- C. 2.0 A
- D. 4.0 A

14.

Three identical resistors of 6Ω are arranged as shown.



What is the resistance between X and Y?

- A. 2Ω
- B. 4Ω
- C. 9Ω
- D. 18Ω

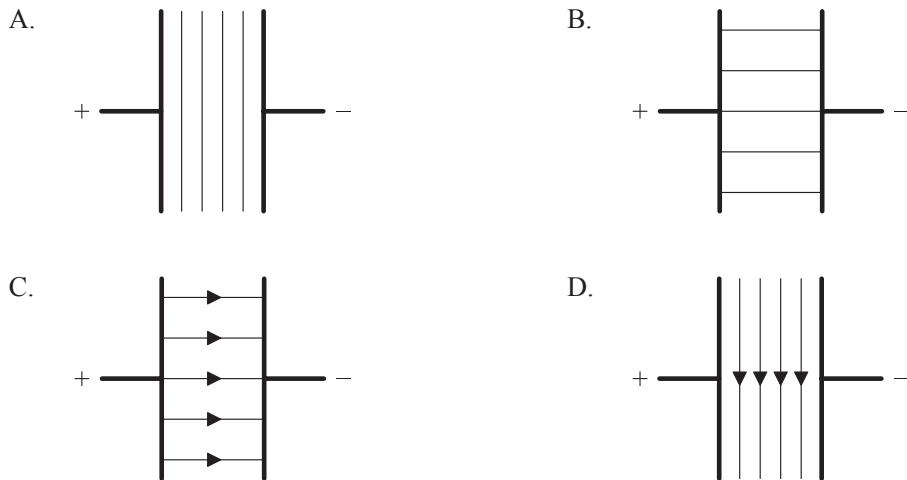
15.

Three identical resistors, R_1 , R_2 and R_3 , each of resistance 2Ω , are connected to a cell of negligible internal resistance as shown. When switch S is open, the power dissipated by R_1 is $18W$.

What is the power dissipated by R_1 when S is closed?

- A. $8W$
- B. $16W$
- C. $18W$
- D. $36W$

16.


A conductor has a resistance of $1.0\text{ k}\Omega$. The length of the conductor is 20 km and the cross-sectional area is 1.0 mm^2 .

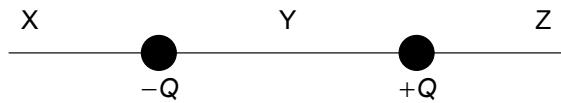
What is the resistivity of this conductor?

- A. $2.0 \times 10^{-5}\Omega\text{m}$
- B. $5.0 \times 10^{-5}\Omega\text{m}$
- C. $2.0 \times 10^{-8}\Omega\text{m}$
- D. $5.0 \times 10^{-8}\Omega\text{m}$

17.

Which diagram shows the equipotential lines between a pair of parallel charged conductors?

18.

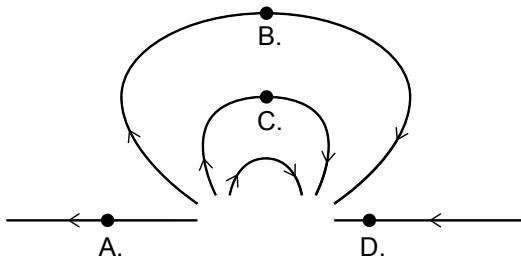

Current I flows in a conducting wire.

What expression correctly gives the number of electrons passing through a cross section of the wire in a time t ?

- A. It
- B. $\frac{I}{t}$
- C. $It\epsilon$
- D. $\frac{It}{\epsilon}$

19.

The diagram shows two equal and opposite charges that are fixed in place.


At which points is the net electric field directed to the right?

- A. X and Y only
- B. Z and Y only
- C. X and Z only
- D. X, Y and Z

20.

The diagram shows electrostatic field lines. The source of the field is not shown.

At which position in the field would a negative point charge experience the greatest force to the right?

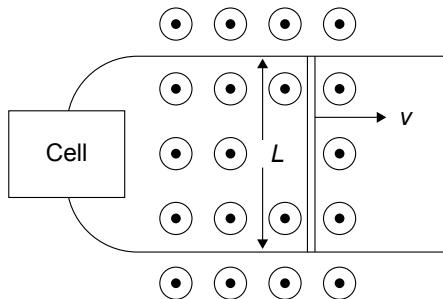
21.

Two isolated point charges, X of charge $+Q$ and Y of charge $+2Q$, are separated by a distance $3d$. P is a point d from X and $2d$ from Y respectively.

What is the net electric field strength at P?

- A. 0
- B. $\frac{kQ}{2d^2}$
- C. $\frac{3kQ}{4d^2}$
- D. $\frac{3kQ}{2d^2}$

22.

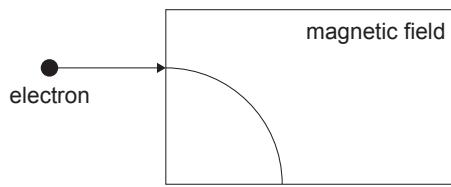

Two isolated identical point charges, Q_1 and Q_2 , are separated by distance d . The electrostatic force on each charge is F . The charge of Q_1 is halved.

What is the electrostatic force on each charge?

	Force on Q_1	Force on Q_2
A.	F	F
B.	F	$\frac{F}{2}$
C.	$\frac{F}{2}$	$\frac{F}{2}$
D.	$\frac{F}{2}$	F

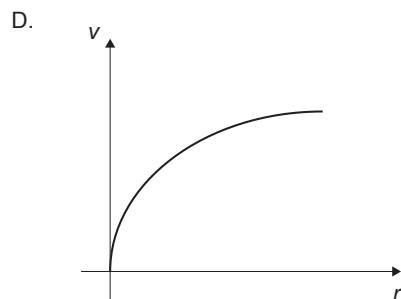
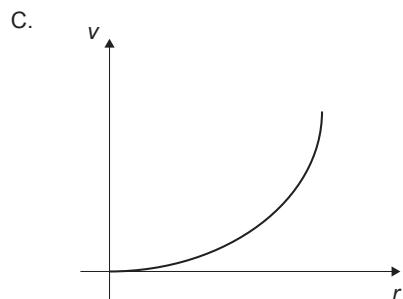
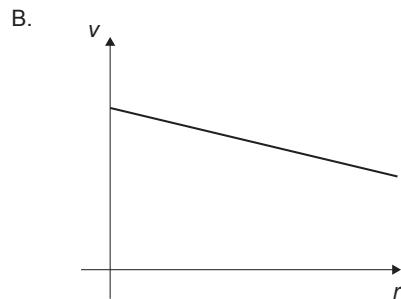
23.

A circuit is created with a cell, two parallel conducting wires and a moveable metal rod of length L . When a uniform magnetic field B is directed out of the page through the circuit, the metal rod moves to the right with velocity v . The initial current in the circuit is I .

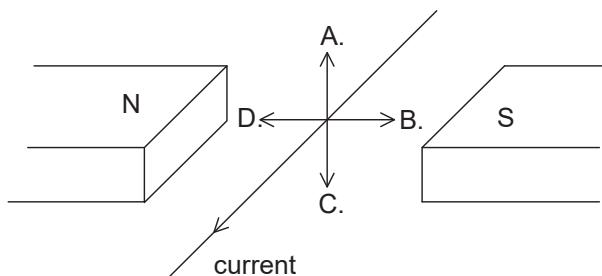


What is the direction of the current through the circuit and the initial force on the metal rod?

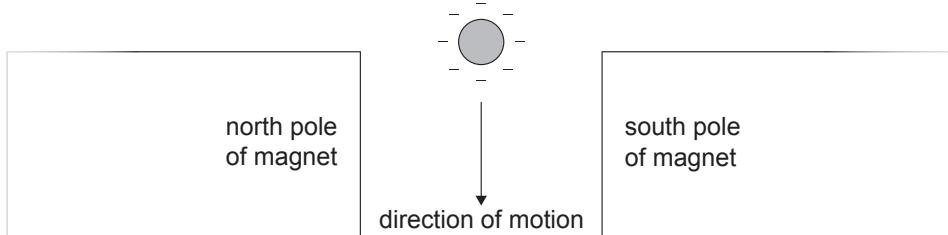
	Direction of I	Initial force on the metal rod
A.	anti-clockwise	$BIL \sin(90^\circ)$
B.	clockwise	$BIL \sin(90^\circ)$
C.	anti-clockwise	$BIL \sin(0^\circ)$
D.	clockwise	$BIL \sin(0^\circ)$




24.

An electron enters a region of uniform magnetic field at a speed v . The direction of the electron is perpendicular to the magnetic field. The path of the electron inside the magnetic field is circular with radius r .


The speed of the electron is varied to obtain different values of r .

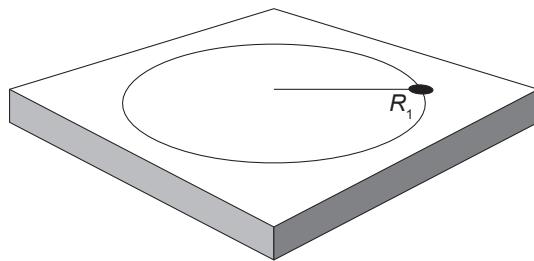
Which graph represents the variation of speed v with r ?


25.

A current in a wire lies between the poles of a magnet. What is the direction of the electromagnetic force on the wire?

26.

A negatively charged sphere is falling through a magnetic field.



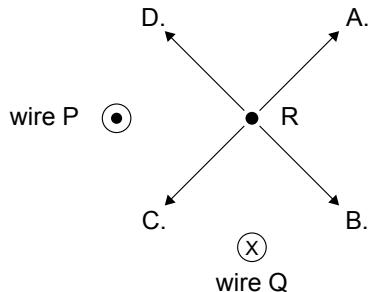
What is the direction of the magnetic force acting on the sphere?

- A. To the left of the page
- B. To the right of the page
- C. Out of the page
- D. Into the page

27.

A mass on the end of a string is rotating on a frictionless table in circular motion of radius R_1 and undergoes an angular displacement of θ in time t .

The string tension is kept constant, but the angular displacement of the mass is increased to 2θ in time t . The radius of the motion changes to R_2 .

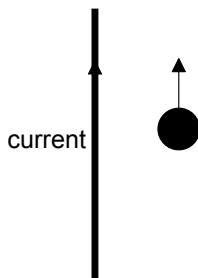

What is R_2 ?

- A. $\frac{R_1}{4}$
- B. $2R_1$
- C. $4R_1$
- D. $R_1 \times R_1$

28.

P and Q are two parallel wires perpendicular to the page that carry currents of equal magnitude in opposite directions. The current in P is out of the page. R is a fixed point equidistant from P and Q.

What is the direction of the magnetic field produced at R?


29.

A current-carrying conductor is at right angles to a magnetic field. The force on the conductor is F . The conductor is turned so that it is parallel to the field with no other changes. In what way, if any, does the force on the conductor change?

- A. It is unchanged.
- B. It increases so that it is greater than F .
- C. It decreases so that it is greater than zero but less than F .
- D. It becomes zero.

30.

A positively-charged particle moves parallel to a wire that carries a current upwards.

What is the direction of the magnetic force on the particle?

- A. To the left
- B. To the right
- C. Into the page
- D. Out of the page

Physics SL

Wednesday 17 december 2025

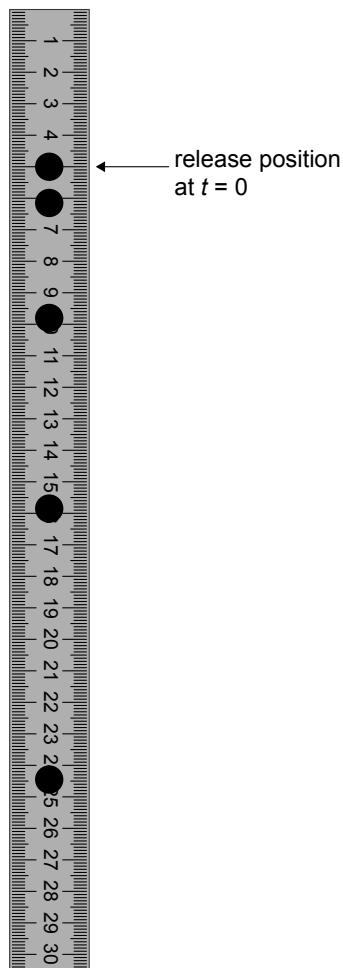
Max Time : 25min.

IB2 Examination

- Paper 1B -

Name: _____

2 IB Questions



These two questions are based on experimental reasoning.

They may not be typical for you, but they aren't difficult. Do your best.

Question 1

A small ball is released from rest at time $t = 0$ in front of a vertical ruler. A multi-flash photograph is taken of the ball at $t = 0$ and every 0.050 s from then on.

The distance s fallen by the ball is related to the acceleration g of the ball and t by $s = \frac{1}{2}gt^2$

Base on some of the displacements between consecutive flashes (visible on the photograph), determine g .

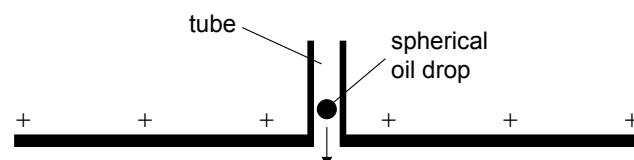
Question 2

Help : question (a) will involve a

The diagram shows two parallel conducting plates that are oppositely charged.

(a) (i) Draw the electric field lines due to the charged plates. [2]

(ii) The potential difference between the plates is 960 V and the distance between them is 8.0 mm. Calculate the electric field strength E between the plates. [2]


.....

.....

.....

.....

In an experiment, an oil drop is introduced into the space between the plates through a small hole in the upper plate. The oil drop moves through air in a tube before falling between the plates.

(b) Explain why the oil drop becomes charged as it falls through the tube. [1]

.....

.....

(c) The oil drop is observed to be stationary in the space between the plates. Buoyancy is one of the forces acting on the drop.

help : $m = \rho V$

The density of oil is 730 times greater than that of air.

(for air: $\rho = 1 \text{ kg/m}^3$)

(i) Show that the buoyancy force is much smaller than the weight.

[3]

.....
.....
.....
.....
.....
.....

(ii) Draw the forces acting on the oil drop, ignoring the buoyancy force.

[2]

oil drop

(iii) Show that the electric charge on the oil drop is given by

$$q = \frac{\rho_o g V}{E}$$

where ρ_o is the density of oil and V is the volume of the oil drop.

[2]

.....
.....
.....
.....

(iv) State the sign of the charge on the oil drop.

[1]

.....
.....

(d) The electric field is turned off. The oil drop falls vertically reaching a constant speed v .

(i) Outline why, for this drop, $\rho_0 g V = 6\pi\eta rv$ where η is the viscosity of air and r is the radius of the oil drop. [2]

.....
.....
.....
.....

(ii) Show that the charge on the oil drop is about 4.8×10^{-19} C.

The following data for the oil drop are available:

$$r = 1.36 \mu\text{m}$$
$$\eta = 1.60 \times 10^{-5} \text{ Pas}$$
$$v = 0.140 \text{ mm s}^{-1}$$

[3]

.....
.....
.....
.....
.....
.....
.....

(iii) The oil drop splits into two parts of equal mass. Both are charged. Deduce the net charge on each part. [2]

.....
.....
.....
.....
