

Using TI84 for the IB Exams -Paper 2

Table of content

Part 1:

Plotting the *curve* of a function $f(x)$ and solving an equation like $f(x) = 0$

..... Page 2

Part 2:

Finding the *mean* and the *standard deviation* of a discrete variable

..... Page 3

Part 3 :

Using you calculator for studying a *Linear regression*

..... Page 4

Part 4 :

Using the *Binomial Law* on your calculator

..... Pages 5 and 6

Part 5 :

Solving IB problems involving the *Normal distribution* $N(\mu, \sigma)$

..... Page 7

Part 1: Plotting the curve of a function $f(x)$ and solving an equation like $f(x) = 0$

1) Introducing a function

to plot its curve.

– press button **$y =$**

– introduce your function as $Y_1 = ..$

Plot1 Plot2 Plot3
 $\checkmark Y_1 = X^2 - X - 1$
 $\checkmark Y_2 =$
 $\checkmark Y_3 =$
 $\checkmark Y_4 =$
 $\checkmark Y_5 =$

fig.1

Notice: you can introduce many other functions

2) Parametrizing the window.

– Domain of plotting : $x_{\min} \leq x \leq x_{\max}$

– Range of plotting : $y_{\min} \leq y \leq y_{\max}$.

WINDOW
 $x_{\min} = -3$
 $x_{\max} = 4$
 $x_{\text{scl}} = 1$
 $y_{\min} = -2$
 $y_{\max} = 3$
 $y_{\text{scl}} = 1$
 $\Delta x_{\text{res}} = 1$

fig.2



fig.3

3) Plotting the curve of Y_1

press button **trace**

4) Finding and selecting « solve (»
in the CATALOG.

CATALOG

sin(sin⁻¹(
sinh(sinh⁻¹(
SinReg
solve(SortA(

fig.4

5) Using `solve(f(x), x, g)`

to find an approximate solution of,

for example: equation : $x^2 - x = 1$

The equation has to be introduced

on the form « $f(x) = 0$ ».

(g is a *guess-value*)

`solve(x^2-x-1, x, 1)`
1.618033989

fig.5

6) Using the *spider* to

find (or to confirm) *graphically*

the solution of $f(x) = 0$

by considering the intersection(s)

of the curve with the x – axis.

- ° You can move the *spider* along the curve.
- ° The coordinates of the spider are given as $x = \dots$ and $y = \dots$

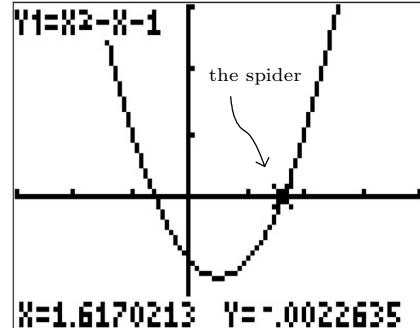


fig.6

Part 2: Finding the *mean* and the *standard deviation* of a discrete variable

We suppose the discrete variable is given by a table, for example

x	0	1	2	3	4	5
$n(x)$	10	7	5	3	0	1

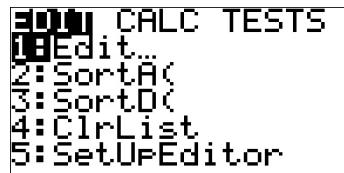


fig.1

What is the *mean* and the *standard-deviation* ?

To find them with the calculators, the steps are:

- 1) Press **stat** (fig.1)
then chose EDIT it the menu.
- 2) Introduce the data in a the table (fig.2)

inserting: in L1 the values of x
in L2 the values of $n(x)$

L1	L2	L3	z
0	10		-----
1	7		
2	5		
3	3		
4	0		
5	1		
-----	-----		

fig.2

- 3) Press **stat** again (fig.3)

then chose CALC it the menu.

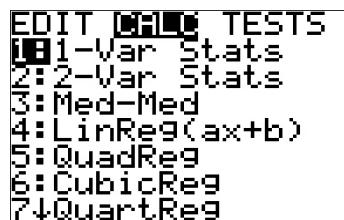


fig.3

- 4) Then chose (fig.4)

List : L1 FreqList : L2

or after **1-var starts** insert « L1,L2 »

Notice: Don't try introducing « L1 » or « L2 »

with the characters « L » and « 1 »

or « L » and « 2 », that doesn't work !

Use **2nd** 1, **2nd** 2. (**2nd** is a blue button)

press enter.

fig.4

1-Var Stats
 $\bar{x}=1.192307692$
 $\sum x=31$
 $\sum x^2=79$
 $\sum x^3=1.296741478$
 $\sigma x=1.271559635$
 $\downarrow n=26$

fig.5

Results: (fig.5)

mean: $\bar{x} = 1.192307....$

standard dev : $\sigma_x = 1.271559...$

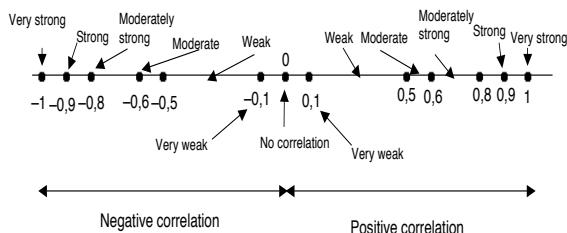
No use to copy so many decimals in your paper!

Part 3 : Using your calculator for studying a Linear regression

Introduction

The r -value from Pearson's correlation indicates the strength of the relationship between two data sets.
 A perfect correlation will have a regression coefficient of $r = \pm 1.0000$
 No correlation will have a regression coefficient of $r = 0$

We can conclude, using the following diagram.



Step 0 (fig.1 & fig.2)

In order to get the values of r and r^2
 you have to activate the mode « Diagnostic » ON
 from the CATALOG.

That have to be done once only...

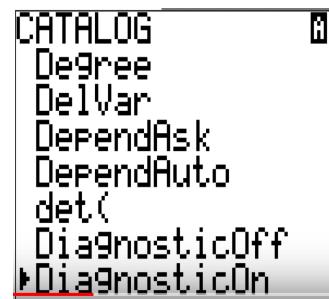


fig.1

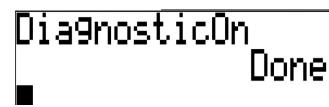


fig.2

L1	L2	L3	2
5	18	-----	
6	22		
4	15		
7	1		
-----	-----		

fig.3

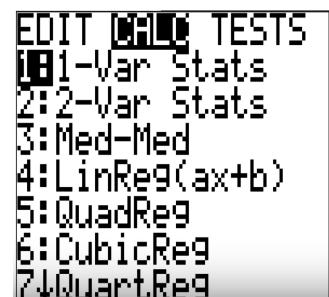


fig.4

Step 2

Press **stat** again (fig.4)
 then chose LinReg it the menu.
 that is 4: LinReg($ax + b$)
 don't take LinReg($a + bx$) !!!

LinReg
 $y=ax+b$
 $a=-3.8$
 $b=34.9$
 $r^2=.2888$
 $r=-.5374011537$

fig.5

Step 3

You get the results as shown in fig.5

Notice you can use a and b to draw the line.

For doing that you can transfer the result in a function-variable like $Y1$, and plot its line. You can even show the like of regression with the data-points
 (you can explain how it the remaining space below).

i:

ii:

iii:

Part 4 : Using your calculator for a question involving the *Binomial Law*

1) Finding C_r^n

for example $C_3^8 = \frac{8!}{(8-3)!3!} = 56$

Press **8**.
 Press **MATH** 3:nCr.
 Press **3** **ENTER**.
 Press **ENTER**.

MATH NUM CPX PRB
 1:rand
 2:nPr
 3:nCr
 4:
 5:randInt()
 6:randNorm()
 7:randBin()

fig.1

2) Finding $P_B(r, n, p)$

for example $P_B(5, 9, \frac{3}{4}) = C_5^9 \left(\frac{3}{4}\right)^5 \left(1 - \frac{3}{4}\right)^4 = \frac{15309}{131072} \cong 0.116798$

Press **2nd** **DISTR** A:binompdf(.
 Enter 9 as trials, 0.75 as p and 5 as x .
 Select Paste and press **ENTER**.
 Press **ENTER** again

DISTR DRAW
 A:binomcdf()
 B:binomcdf()
 C:binomcdf()
 D:poissonpdf()
 E:poissoncdf()
 F:geometpdf()
 G:geometcdf()

fig.2

3) Finding $\sum_{r=0}^{r_{\max}} P_B(r, n, p)$

for example $P_B(0, 20, \frac{9}{40}) + P_B(1, 20, \frac{9}{40}) + \dots + P_B(10, 20, \frac{9}{40})$

That gives $\text{Prob}(X \leq 10)$ assuming $(X = r) = P_B(r, 20, \frac{9}{40})$

Press **2nd** **DISTR** B:binomcdf(.
 Enter 30 as trials, 0.45 as p and 10 as x .
 Select Paste and press **ENTER**.
 Press **ENTER** again

DISTR DRAW
 A:binomcdf()
 B:binomcdf()
 C:poissonpdf()
 D:poissoncdf()
 E:geometpdf()
 F:geometcdf()
 binomcdf(20, 0.45)
 .75071064

fig.3

Example (IB)

A bag contains four gold balls and six silver balls.

(a) Two balls are drawn at random from the bag, with replacement. Let X be the number of gold balls drawn from the bag.

(i) Find $P(X = 0)$.
 (ii) Find $P(X = 1)$.
 (iii) Hence, find $E(X)$.

[8 marks]

Fourteen balls are drawn from the bag, with replacement.

(b) Find the probability that exactly five of the balls are gold.
 (c) Find the probability that at most five of the balls are gold.
 (d) Given that at most five of the balls are gold, find the probability that exactly five of the balls are gold. Give the answer correct to two decimal places.

[2 marks]

[2 marks]

[3 marks]

Part 5 : Solving IB problems involving the normal distribution $N(\mu, \sigma)$

1) Use of a calculator

I] For solving $P(x < a)$ with a Ti 84 use **NormalCDF**($-\infty, a, \mu, \sigma$)
 More generally for solving $P(\min < x < \max)$ use **NormalCDF**(\min, \max, μ, σ)

Notice: in place of $\pm\infty$ you can take $\pm E99$

II] For finding a such that $P(x < a)$ has a given value p use **InverNormal**(p, μ, σ)

2) $N(\mu, \sigma)$ and $N(0, 1)$

Each problem we may have to solve with the variable x has its own values for the *mean* μ and for the *standard deviation* σ .

We name « $N(\mu, \sigma)$ » the *normal distribution* adapted to such a problem.

Hence $N(0, 1)$ is the particular case when $\mu = 0$ and $\sigma = 1$.

3) Change of variable

In some situations, it can be useful to change the variable x of a given problem in order to use the variable z of $N(0, 1)$ in place of the x of $N(\mu, \sigma)$.

This change of variable is given by the formula \diamond :
$$z = \frac{x - \mu}{\sigma}$$

4) What is the use of this change of variable ?

It is useful in two situations:

- a) When we don't know μ and σ , but two probabilities about x .
- b) When we have a calculator unable to work with an other normal distribution than $N(0, 1)$.

5) Example of (a) : The two given probabilities are for instance :

$$P(x < 1) = 23\% \quad \text{and} \quad P(x < 3) = 74\% \quad \text{find } \mu \text{ and } \sigma.$$

$$\text{Using } \diamond : \quad P\left(\frac{1 - \mu}{\sigma}\right) = 0.23 \quad \text{and} \quad P\left(\frac{3 - \mu}{\sigma}\right) = 0.74$$

$$\text{therefore: } \begin{cases} \frac{1 - \mu}{\sigma} = \text{InversCDF}(0.23) = -0.72885 \\ \frac{3 - \mu}{\sigma} = \text{InverseCDF}(0.74) = 0.64335 \end{cases} \Rightarrow \begin{cases} 0.72885\sigma - \mu = -1 \\ 0.64335\sigma + \mu = 3 \end{cases} \Rightarrow \mu = 2.07 \text{ and } \sigma = 1.447$$

6) Two examples of using (b):

- i) For $x \sim N(2.07, 1.447)$ what is the probability $P(1 < x < 3)$?

Of course if you calculator has the function **NormalCDF** as shown in (1)[I], you just has to use it : $\text{NormalCDF}(1, 3, 2.07, 1.447) = 0.51 = 51\%$ (that make sens: $0.74 - 0.23 = 0.51$)

If you calculator works *only* with $N(0, 1)$, then you have to rewrite the question in terms of z

$$\text{by } \diamond: P(1 < x < 3) = P\left(\frac{1 - 2.07}{1.447} < z < \frac{3 - 2.07}{1.447}\right) = P(-0.7495 < z < 0.6427) \cong 0.51.$$

- ii) For $x \sim N(2.07, 1.447)$ find a such that $P(x < a) = 0.74$

If you calculator has the function **InverNormal** as shown above in (1)[2] you just has to use it : $\text{InverNormal}(0.74, 2.07, 1.447) = 3$ (that make sens, considering (4) above !)

If it has *only* **InversNormal**(p) for $z \sim N(0, 1)$ you find

$$z = 0.64335 \text{ then by } \diamond: x = \sigma z + \mu = 3$$