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Méthodes de Bissection et de Newton dans une question de Maturité
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Problème 1, Été 2012, 23 points

On donne l'équation différentielle du premier ordre y 0=F (x; y) avec F (x; y)=x2+ y

et la condition initiale y(0)=1:

a) Estimation de f(4) par la méthode d'Euler en 4 pas ( donc avec h=1)

n xn yn
0 0 ¡1
1 1 ¡2
2 2 ¡3
3 3 ¡2
4 4 5

yn= yn¡1+F (xn¡1; yn¡1)h

b) f(x)=Cex¡x2¡ 2x¡ 2 avec C =1

Ce résultat se trouve soit par la variation de la constante, ( Ansatz: yNH=C(x)ex )

soit en recherchant la solution non homogène à partirde l'hypothèse yNH= ax2+ bx+ c

qui, dans l'équation de départ, donne : 2ax+b=x2+ ax2+ bx+ c

donc a=¡1; b=2a=¡2 et c= b=¡2

c) La courbe semble en effet avoir un minimum

Pour le trouver, nous allons appliquer (comme demandé)
l'algorithme de la bissection, ici à la dérivée de f(x).

f 0(x)= ex¡ 2x¡ 2

On remarque que f 0(1)= e¡ 4< 0
et que f 0(2)= e2¡ 6=� 1.38> 0

On commence donc avec a=1 et b=2
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Remarque

A l'étape 6 on a f 0(xs)=¡0.0216125.
La valeur absolue de la pente de la tangente
n'est donc pas encore plus petite que 0.05.

C'est selement à l'étape 7 que l'on peut
s'arrêtre, puisque f 0(1.6796875)= 0.0045045.
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d) Reste à appliquer l'algorithme de Newton en prenant 2.5 comme valeur initiale,

afin de déterminer une approximation du zéro de f en deux étapes: xn=xn¡1¡ f(xn¡1)

f 0(xn¡1)

étape estimation

0 : 2.5

1 : 2.70598

2 : 2.67492

3 : 2.67406

e) L'abscisse du point d'inflexion vérifie f 00(x)= 0

donc ex¡ 2=0 ) xinfl= ln(2)=� 0.7 et f(xinfl)=�¡1.87

f) Les informations réunies précédemment permettent de tracer la courbe
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