

Test 3

3 december 2025

Maths IB₂

subjects : *Probability I*

Tot : [/ 15 marks]

Marksheme & Answers

Problem 1

[/ 7 marks]

(a) (i) $\frac{2}{n}$

A1 **N1**

(ii) correct probability for one of the draws

A1

eg $P(\text{not blue first}) = \frac{n-2}{n}$, blue second $= \frac{2}{n-1}$

valid approach

(M1)

eg recognizing loss on first in order to win on second,
 $P(B' \text{ then } B)$, $P(B') \times P(B | B')$, tree diagram

correct expression in terms of n

A1 **N3**

eg $\frac{n-2}{n} \times \frac{2}{n-1}$, $\frac{2n-4}{n^2-n}$, $\frac{2(n-2)}{n(n-1)}$

[4 marks]

(b) (i) correct working

(A1)

eg $\frac{3}{5} \times \frac{2}{4} \times \frac{2}{3}$

$\frac{12}{60} \left(= \frac{1}{5} \right)$

A1 **N2**

(ii) correct working

(A1)

eg $\frac{3}{5} \times \frac{2}{4} \times \frac{1}{3} \times \frac{2}{2}$

$\frac{6}{60} \left(= \frac{1}{10} \right)$

A1 **N2**

Problem 2

1 / 9 marks

(a) valid approach to find $P(R)$ **(M1)**

tree diagram (must include probability of picking box) with correct required probabilities

OR $P(R \cap B_1) + P(R \cap B_2)$ OR $P(R|B_1)P(B_1) + P(R|B_2)P(B_2)$

$$\frac{5}{7} \cdot \frac{1}{2} + \frac{4}{7} \cdot \frac{1}{2} \quad \text{**(A1)**$$

$$P(R) = \frac{9}{14} \quad \text{**A1**$$

[3 marks](b) events A and R are not independent, since $\frac{9}{14} \cdot \frac{1}{2} \neq \frac{5}{14}$ OR $\frac{5}{7} \neq \frac{9}{14}$ OR $\frac{5}{9} \neq \frac{1}{2}$
OR an explanation e.g. different number of red balls in each box **A2****Question 3**The following table shows the probability distribution of a discrete random variable where $a, k \in \mathbb{R}^+$.

x	1	2	3	4
$P(X=x)$	k	k^2	a	k^3

Given that $E(X) = 2.3$, find the value of a .Answers

$$\begin{cases} k + 2k^2 + 3a + 4k^3 = 2.3 \\ k + k^2 + k^3 + a = 1 \quad \text{then } a = 1 - k - k^2 - k^3 \end{cases}$$

then $k + 2k^2 + 3(1 - k - k^2 - k^3) + 4k^3 = 2.3$

$$k^3 - k^2 - 2k + 0.7 = 0 \quad \text{as } k \in \mathbb{R}^+: \quad k = 0.315871 \text{ or } k = 1.86952$$

therefore $a = 1 - k - k^2 - k^3 = \boxed{0.552839} \quad \text{(the other value of } k \text{ gives } a < 0\text{)}$