IB_2

Test 2

Friday 31 Oct 2025

Subject: Antiderivatives & Integrals

Name: _____

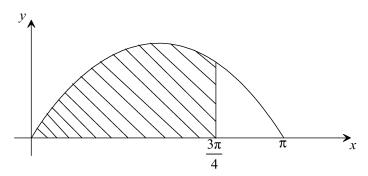
Tot: /31

Problem 1 [12 marks]

Find the following antiderivatives

1)
$$\int (3\cos(x) - 4\sin(4x)) dx$$

$$3) \quad \int 3e^{\ln(x)} \cdot \frac{1}{x} \, dx$$


2)
$$\int \cos(x^3+1)3x^2 dx$$

4)
$$\int \left(\frac{16}{x^5} - \frac{4}{x^3} - \frac{2}{x}\right) dx$$

 $\textbf{Problem 2} \quad (\text{ IB Paper1 question }) \\$

[6 marks]

The diagram shows part of the curve $y = \sin x$. The shaded region is bounded by the curve and the lines y = 0 and $x = \frac{3\pi}{4}$.

Given that $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$ and $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$, calculate the **exact** area of the shaded region.

Problem 3 [14 marks]

Give the **exact** expression for the area of the 3 surfaces below

1) $f(x) = 3\cos(2x)$

a = 0

b>0 : first intersection with the $x-{\rm axis}$

2) $f(x) = \sin(2x) + 2\sin(x)$

a = 0

 $b = \pi$

3)

i) Find the derivative of $F(x) = x (\ln(x) - 1)$

ii) Hence explain why F(x) + c is an antiderivative of $f(x) = \ln(x)$

iii) Show that the area under the curve $y = \ln(x)$ for a < x < b

for a < x < 0with a = 1

b = e

(as shown on the picture)

<u>is</u> 1.

 $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{-1}$ $\frac{1}{-2}$ $\frac{1}{7}$ $\frac{$

@ B.B 2021 using $\text{T}_{\mbox{\footnotesize{E}}}\mbox{X}_{\mbox{\footnotesize{MACS}}}$