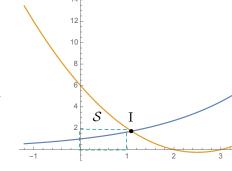
Subject: Antiderivatives & Integrals

Tot:

/28

ANSWERS

## Problem 1


The picture show the graph of the functions

$$f(x) = e^{\frac{x}{2}}$$
 and  $g(x) = x^2$  5x+6 The intercept I is at  $x = 1.0937$ 

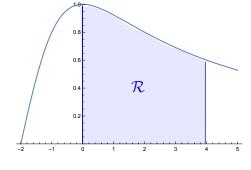
i) The area of the surface  $\mathcal S$  between the two curves and the y-axis is

$$\int_{0}^{1.0937} e^{\frac{x}{2}} dx + \int_{1.0937}^{2} (x^{2} - 5x + 6) dx = \left[ 2e^{\frac{x}{2}} \right]_{0}^{1.0937} + \left[ \frac{x^{3}}{3} - 5\frac{x^{2}}{2} + 6x \right]_{1.0937}^{2}$$
$$= 1.4556 + 0.652627 = \boxed{2.10823}$$

ii) Area of the rectangle (size x=1 & y=2) is  $1\times 2=2$ , that is about 95% of area of  $\mathcal{S}$ .



## Problem 2


The picture on the left shows the a part of the curve of the function  $y=\frac{4x+8}{x^2+4x+8},$  for -2  $\leqslant x \leqslant 5$ 

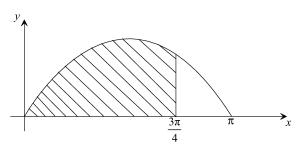
(a) Find x and y intercepts of the curve

(b) Show the region  $\mathcal{R}$  that correspond to

$$\int_0^4 \frac{4x+8}{x^2+4x+8} \, dx$$

(c) Find the area of  $\mathcal{R}$ 




paper 1 (without calculator)

$$\mathcal{R} = [2\ln(x^2 + 4x + 8)]_0^4 = 2(\ln(40) \ln(8)) = \boxed{2\ln(5)}$$

paper 1 (with calculator)  $\int_{0}^{4} ((4*X+8)/(X^{2}+4*X+8)) dX$ 3.218875825

## Problem 3

The diagram shows part of the curve  $y = \sin x$ . The shaded region is bounded by the curve and the lines y = 0 and  $x = \frac{3\pi}{4}$ .



Given that  $\sin \frac{3\pi}{4} = \frac{\sqrt{2}}{2}$  and  $\cos \frac{3\pi}{4} = -\frac{\sqrt{2}}{2}$ , calculate the **exact** area of the shaded region.

$$\mathcal{A} = \int_0^{\frac{3\pi}{4}} \sin(x) dx$$

$$= \cos(x) \prod_{0}^{\frac{3\pi}{4}}$$

$$= \cos\left(\frac{3\pi}{4}\right) + \cos(0)$$

$$= \boxed{1 + \frac{\sqrt{2}}{2}}$$

© B.B 2025 T<sub>E</sub>X<sub>MACS</sub>