Maths IB₂

subjets: Maximum and Minimum & Optimisation,

Tot : [/ 28 marks]

Name: _____

Problem 1

[/ 6 marks]

Let
$$g(x) = \frac{\ln(x)}{x^2}$$

- 1. Use the quotient rule to show that $g'(x) = \frac{1 2\ln(x)}{x^3}$
- 2. The figure below shows the graph of g.

Find the coordinates of M.

Problem 2 [/ 9 marks]

A farmer wishes to create a rectangular enclosure, ABCD, of area 525 m2, as shown below.

The fencing used for side AB costs 11 \in per metre. The fencing for the other three sides costs 3 \in per metre. The farmer creates an enclosure so that the cost is a minimum. Find this minimum cost.

Problem 3

[/ 13 marks]

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.

The point P(x, y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the *x*-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$.

- (a) Write down an expression in terms of θ for
 - (i) *x*;
 - (ii) y.

(2)

Let the area of the rectangle be A.

(b) Show that $A = 18 \sin 2\theta$.

(3)

- (c) (i) Find $\frac{dA}{d\theta}$.
 - (ii) Hence, find the exact value of θ which maximizes the area of the rectangle.
 - (iii) Use the second derivative to justify that this value of θ does give a maximum.

(8)

(Total 13 marks)