$\verb|subjets|: First Principle & rules of derivation|\\$

/45 marks] Tot:

Problem 1 [5 marks]

Let us consider the function $f: x \mapsto x^2 - 2x$ Show that:

Using the First Principle: $f'(x_0) = \lim_{h \to 0} \frac{f(x) - f(x_0)}{x - x_0}$

show that $f'(x_0) = 4x_0$ 2 and find x_0 such that the gradient of the tangent at x_0 is 10

Problem 2 [40 marks]

For the following functions, find

- i) the derivative,
- ii) the gradient of the tangent and of the normal to the curve at $x = x_0$,

#	function	x_0	derivative	gradient tangent at $x = x_0$
1	$\frac{4}{5}x^5$ 14x	2		
2	$36 \cdot \sqrt[3]{x}$	8		
3	$8x + \frac{32}{\sqrt{x}}$	4		
4	$7x \frac{3\pi}{2} \cos(x)$	$\frac{\pi}{2}$		
5	$e^x \cos(x)$	$\frac{\pi}{4}$		
6	$\frac{x^2}{x^2+1}$	1		
7	$e^{\sin(x)}$	0		
8	$x^2 \ln(x)$	1		
9	$\cos^2(x)$	$\frac{\pi}{4}$		
10	$\sin(x^3)$	$\sqrt[3]{\pi}$		

Find the derivative of $f(x) = e^{(e^{(e^x)})}$ Bonus

[+3]