Subjects: Implicit derivatives

Name:_____

Question 1

A curve is given by the equation $y = \frac{e^{2x} - 1}{e^{2x} + 1}$, $x \in \mathbb{R}$.

- (a) By applying l'Hôpital's rule or otherwise, show that $\lim_{x\to\infty} \left(\frac{e^{2x}-1}{e^{2x}+1}\right) = 1$. [2]
- (b) (i) Show that $\frac{dy}{dx} = \frac{4e^{2x}}{(e^{2x} + 1)^2}$.
 - (ii) Hence, show that $1 y^2 = \frac{dy}{dx}$. [6]
- (c) (i) By using implicit differentiation and the result in part (b)(ii), show that $\frac{d^2y}{dx^2} = 2y^3 2y$.
 - (ii) Hence, find an expression for $\frac{d^3y}{dx^3}$ in terms of y. [5]
- (d) By using your results from parts (b) and (c), find the Maclaurin series for $\frac{e^{2x}-1}{e^{2x}+1}$ up to and including the term in x^3 . [4]

Question 2

A curve is given by the equation $y = \frac{e^{2x} - 1}{e^{2x} + 1}$, $x \in \mathbb{R}$.

- (a) By applying l'Hôpital's rule or otherwise, show that $\lim_{x\to\infty} \left(\frac{e^{2x}-1}{e^{2x}+1}\right) = 1$. [2]
- (b) (i) Show that $\frac{dy}{dx} = \frac{4e^{2x}}{(e^{2x} + 1)^2}$.
 - (ii) Hence, show that $1 y^2 = \frac{dy}{dx}$. [6]
- (c) (i) By using implicit differentiation and the result in part (b)(ii), show that $\frac{d^2y}{dx^2} = 2y^3 2y$.
 - (ii) Hence, find an expression for $\frac{d^3y}{dx^3}$ in terms of y. [5]
- (d) By using your results from parts (b) and (c), find the Maclaurin series for $\frac{e^{2x}-1}{e^{2x}+1}$ up to and including the term in x^3 . [4]