## Test 1

Tuesday 30 sept.2025

 $\mathbb{N}$  Maths  $\mathrm{IB}_2$  HL

Subjects: derivatives, implicit derivation ...

Total: / 20

Name:\_\_\_\_\_

Problem 1 [ /12 marks ]

A curve  $\mathcal{C}$  is defined implicitly by the equation  $e^{\sin(y)} = \sin(x) + y^2$ .

- (a) Find the equation of the tangent to C at the point P where y=0 and  $0 < x < \pi$ .
- (b) Find the equation of the normal to C at the point P.
- (c) Find the second derivative at the point P.
- (d) The image below shows a part of C



Show the point P on the same picture, and the two lines (the tangent and the normal at C).

(e) Show that the curve in "concave-up" at P

Problem 2 [ /4 marks]

Given that  $rac{\mathrm{d}y}{\mathrm{d}x}=rac{ky-x^2}{y^2-kx},\; k>0$  when  $x^3+y^3-6xy=0$ , find the value of k.

Given that  $xy=\cot{(xy)}$  and that derivative  $\dfrac{\mathrm{d}y}{\mathrm{d}x}$  can be written in the form  $\dfrac{\mathrm{d}y}{\mathrm{d}x}=k\dfrac{y}{x},\;k\in\mathbb{Z}.$  Calculate the value of k.