

Christmas Examination

Monday 15 Dec.2025

Duration : 2 hours

Maths HL IB₂ Part 1

Name: _____

(8 IB questions 106 marks)

A calculator is not allowed for this first part

Problem 1

[/ 19 marks]

(a) Solve $z^2 = -1 - \sqrt{3}i$, giving your answers in the form $z = r(\cos \theta + i \sin \theta)$. [4]

Let z_1 and z_2 be the square roots of $-1 - \sqrt{3}i$, where $\operatorname{Re}(z_1) > 0$.

Let z_3 and z_4 be the square roots of $-1 + \sqrt{3}i$, where $\operatorname{Re}(z_3) > 0$.

(b) Expressing your answers in the form $z = a + bi$, where $a, b \in \mathbb{R}$,

(i) find z_1 and z_2 ;

(ii) deduce z_3 and z_4 . [4]

The four roots z_1, z_2, z_3 and z_4 are represented by the points A, B, C and D respectively on an Argand diagram.

(c) (i) Plot the points A, B, C and D on an Argand diagram.

(ii) Find the area of the polygon formed by these four points. [4]

The four roots z_1, z_2, z_3 and z_4 satisfy the equation $z^4 + 2z^2 + 4 = 0$.

The four roots $\frac{1}{z_1}, \frac{1}{z_2}, \frac{1}{z_3}$ and $\frac{1}{z_4}$ satisfy the equation $pw^4 + qw^2 + r = 0$ where $p, q, r \in \mathbb{Z}$.

(d) Find the value of p, q and r . [3]

The four roots $\frac{1}{z_1}, \frac{1}{z_2}, \frac{1}{z_3}$ and $\frac{1}{z_4}$ are represented by the points E, F, G and H

respectively on an Argand diagram.

(e) (i) Find $\frac{1}{z_1}$ in the form $z = a + bi$, where $a, b \in \mathbb{R}$.

(ii) Hence, deduce the area of the polygon formed by these four points. [4]

Problem 2

[/ 6 marks]

Use l'Hôpital's rule to find $\lim_{x \rightarrow 0} \frac{\sec^4 x - \cos^2 x}{x^4 - x^2}$.

Problem 3

[/ 7 marks]

Consider the function $f(x) = \sqrt{x^2 \ln x + 4 - x^2}$, where $x \in \mathbb{R}$, $x > 0$.

(a) Show that the distance, l , between the origin and any point on the graph of f is given by $l = \sqrt{x^2 \ln x + 4}$. [1]

(b) Hence, find the x -coordinate of the point on the graph of f which is closest to the origin. [6]

Problem 4

[/ 19 marks]

Consider the family of functions $f_n(x) = \cos^n x$, where $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

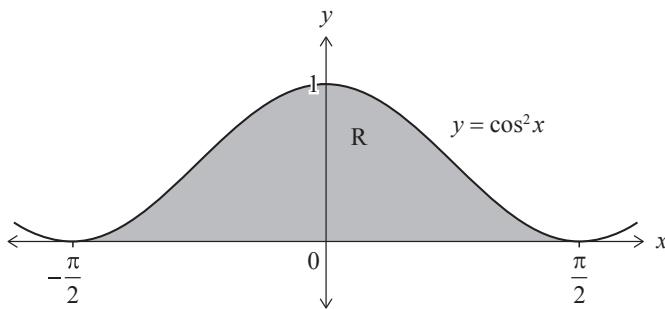
(a) By writing $\cos^n x$ as $\cos^{n-1} x \cos x$, show that

$$\int \cos^n x \, dx = \cos^{n-1} x \sin x + (n-1) \int \cos^{n-2} x \, dx - (n-1) \int \cos^n x \, dx \text{ for } n > 1. \quad [4]$$

(b) Hence, show that $\int f_n(x) \, dx = \frac{1}{n} \cos^{n-1} x \sin x + \frac{n-1}{n} \int f_{n-2}(x) \, dx$ for $n > 1$. [2]

(c) Hence, find an expression for $\int \cos^4 x \, dx$, giving your answer in the form $p \cos^3 x \sin x + q \cos x \sin x + rx + c$ where $p, q, r \in \mathbb{Q}^+$. [4]

The region R is enclosed by the graph of $y = \cos^2 x$ and the x -axis where $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$, as shown in the following diagram.



The region R is rotated by 2π radians around the x -axis to form a solid of revolution.

(d) Find the volume of the solid. [4]

(e) (i) Find the Maclaurin series of $f_n(x)$ up to the term in x^2 .

(ii) Hence or otherwise, find $\lim_{x \rightarrow 0} \frac{f_n(x) - 1}{x^2}$ in terms of n . [5]

Problem 5

[/ 17 marks]

The function f is defined by $f(x) = 4^x$, where $x \in \mathbb{R}$.

(a) Find $f^{-1}(8)$. Express your answer in the form $\frac{p}{q}$ where $p, q \in \mathbb{Z}$. [3]

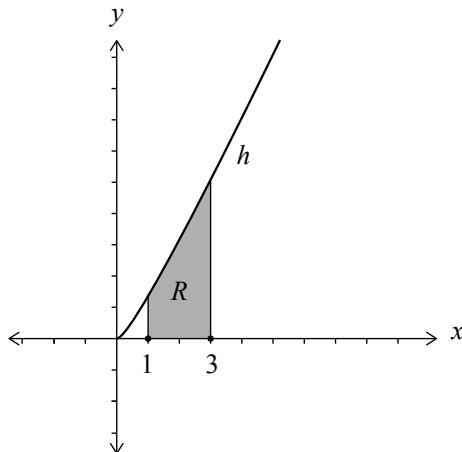
The function g is defined by $g(x) = 1 + \log_2 x$, where $x \in \mathbb{R}^+$.

(b) (i) Find an expression for $g^{-1}(x)$.
(ii) Describe a sequence of transformations that transforms the graph of $y = g^{-1}(x)$ to the graph of $y = f(x)$. [4]

(c) Show that $(f \circ g)(x) = 4x^2$. [3]

The function h is defined by $h(x) = \frac{4x^2}{2x+1}$, $x \neq -\frac{1}{2}$.

The following diagram shows part of the graph of h . Let R be the region enclosed by the graph of h and the x -axis, between the lines $x = 1$ and $x = 3$.



(d) (i) Show that $2x-1 + \frac{1}{2x+1} = \frac{4x^2}{2x+1}$.
(ii) Hence or otherwise, find the area of R , giving your answer in the form $p + q \ln r$, where $p, q, r \in \mathbb{Q}^+$. [7]

Problem 6

[/ 20 marks]

The acceleration, $a \text{ ms}^{-2}$, of a particle moving in a horizontal line at time t seconds, $t \geq 0$, is given by $a = -(1+v)$ where $v \text{ ms}^{-1}$ is the particle's velocity and $v > -1$.

At $t = 0$, the particle is at a fixed origin O and has initial velocity $v_0 \text{ ms}^{-1}$.

(a) By solving an appropriate differential equation, show that the particle's velocity at time t is given by $v(t) = (1 + v_0)e^{-t} - 1$. [6]

(b) Initially at O , the particle moves in the positive direction until it reaches its maximum displacement from O . The particle then returns to O .

Let s metres represent the particle's displacement from O and s_{\max} its maximum displacement from O .

(i) Show that the time T taken for the particle to reach s_{\max} satisfies the equation $e^T = 1 + v_0$.

(ii) By solving an appropriate differential equation and using the result from part (b) (i), find an expression for s_{\max} in terms of v_0 . [7]

Let $v(T - k)$ represent the particle's velocity k seconds before it reaches s_{\max} , where

$$v(T - k) = (1 + v_0)e^{-(T-k)} - 1.$$

(c) By using the result to part (b) (i), show that $v(T - k) = e^k - 1$. [2]

Similarly, let $v(T + k)$ represent the particle's velocity k seconds after it reaches s_{\max} .

(d) Deduce a similar expression for $v(T + k)$ in terms of k . [2]

(e) Hence, show that $v(T - k) + v(T + k) \geq 0$. [3]

Problem 7

[/ 5 marks]

Box 1 contains 5 red balls and 2 white balls.

Box 2 contains 4 red balls and 3 white balls.

(a) A box is chosen at random and a ball is drawn. Find the probability that the ball is red. [3]

Let A be the event that “box 1 is chosen” and let R be the event that “a red ball is drawn”.

(b) Determine whether events A and R are independent. [2]

Problem 8

[/ 13 marks]

A discrete random variable, X , has the following probability distribution, where $a > 0$ and k is a constant.

x	0	a	$2a$	$3a$
$P(X=x)$	k	$3k^2$	$2k^2$	k^2

(a) Show that $k = \frac{1}{3}$. [5]

(b) Find $P(X < 3a)$. [2]

(c) Find $P(X \geq a | X < 3a)$. [3]

(d) Given that $E(X) = 20$, find the value of a . [3]