Maths AA IB₁

Arithmetic or Geometric sequences & Series

Total: / 24

ANSWERS

Question 1 [4 marks]

An arithmetic sequence has a first term of 20 and a common

difference of 13. u = 20 + (n - 1)13 = 7 + 13n

Identify which term is equal to 228. Find the sum of all the terms

20, 33, ..., 228.
$$228 = 7 + 13n \Rightarrow n = \frac{221}{13} = \boxed{17}$$

The sum is
$$s_{17} = \frac{17}{2}(2 \cdot 20 + 16 \times 13) = \frac{17}{2}248 = \boxed{2108}$$

Question 2 [5 marks]

Consider the sequence, $S_n = 2n^2 - 3n$.

$$s_1 = 1 = u_1$$

 $s_1 = 2 = u_1 + u_2 \Rightarrow u_2 = 3$ $d = u_2$ $u_1 = 4$

Find an expression for the general term, u_n , and show that this

is an arithmetic sequence. $\begin{array}{cc} u_n = u_1 + (n & 1)s \\ u_n = & 1 + (n & 1)4 = \boxed{4n & 5} \end{array}$

Question 3 [4 marks]

A geometric sequence has a second term of 14 and a sixth term

of 224. $14 = u_1 r^2 \quad 1$ $224 = u_1 r^6 \quad 1$

by division: $16 = r^4 \Rightarrow r \pm \sqrt[4]{16} = \boxed{\pm 2}$

Find the possible values of the common ratio and the first term.

$$u_1 = 14 \div (\pm 2) = \pm 7$$

Question 4 [5 marks]

(a) Find the number of terms in the geometric series

$$1+3+9+27+\dots +177147$$

 $177147 = 3^{(n-1)} \Rightarrow n \quad 1 = \log_3(177147) = 12 \quad \Rightarrow \boxed{n=12}$

(b) Calculate the sum of the series in part (a)

$$s_{12} = 1 \frac{1 - 3^{12}}{1 - 3} = 265720$$

Question 5 [6 marks]

Sam invests 1700€ in a savings account that pays a nominal annual rate of interest of 2.74 %, compounded half-yearly*.

(a) Find the amount that Sam will have in his account after 10 years.

David also invests 1700€ in a savings account that pays an annual rate of interest of r%, compounded yearly. $1700 \left(1 + \frac{2.74}{100 \times 2}\right)^{2 \times 12} = \boxed{2356.6€}$

- (b) Find the value of r required so that the amount in David's account after 10 years will be equal to the amount in Sam's account. $1776 = 1700 \ 1 + \frac{r}{100})^{12} \Rightarrow \boxed{r = 2.76\%}$
 - * compuesto semestral 半年ごとの複合