Test 5

Subjects : Scalar product & equations of Planes

Total: / 3

Thursday 20.03.2025

Name:_____

Question 1 (May 23 Paper1)

Maths IB_1 HL

[8 marks]

The angle between a line and a plane is α , where $\alpha \in \mathbb{R}$, $0 < \alpha < \frac{\pi}{2}$.

The equation of the line is $\frac{x-1}{3} = \frac{y+2}{2} = 5-z$, and the equation of the plane is $4x + (\cos \alpha)y + (\sin \alpha)z = 1$.

- i) Find a trigonometric equation for α (in other terms: α should be a solution of this equation) [4]
- ii) In the original IB question (paper 2) it was asked to give a value of α .

That can be done only using the function SOLVE of your calculator.

If you have a Ti calculator, you can try to follow the instructions in the frame below

[+2]

iii) If $\alpha = \frac{3\pi}{2}$ rad, what are the coordinates of I, the intersection between the line and the plane? [4]

Two lines, L_1 and L_2 , intersect at point P. Point A(2t, 8, 3), where t > 0, lies on L_2 . This is shown in the following diagram.

diagram not to scale

The acute angle between the two lines is $\frac{\pi}{3}$.

The direction vector of L_1 is $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, and $\overrightarrow{PA} = \begin{pmatrix} 2t \\ 0 \\ 3+t \end{pmatrix}$.

(a) Show that
$$4t = \sqrt{10t^2 + 12t + 18}$$
. [4]

(b) Find the value of
$$t$$
. [4]

(c) Hence or otherwise, find the shortest distance from A to
$$L_1$$
. [4]

(d) Find a point B that lies on
$$L_1$$
 [2]

(e) Find a vector equation of the plane
$$\Pi_{ABC}$$
 that contains A B an C [4]

(f) Find a cartesian equation of the plane
$$\Pi_{\text{\tiny ABC}}$$
 [3]

(g) From (f) otherwise, find a vector
$$\vec{n}$$
 perpendicular to L_1 and L_2 [3]

Question 3 (Kognity) [5 marks]

A plane, which is parallel to the plane x-2y+3z=2, passes through the points (-1,-1,1) and (-1,2,k). Find the value of k.