Test 5 Subjects : Scalar product & equations of Planes Total: / 3 Thursday 20.03.2025 Name:_____ Question 1 (May 23 Paper1) Maths IB_1 HL [8 marks] The angle between a line and a plane is α , where $\alpha \in \mathbb{R}$, $0 < \alpha < \frac{\pi}{2}$. The equation of the line is $\frac{x-1}{3} = \frac{y+2}{2} = 5-z$, and the equation of the plane is $4x + (\cos \alpha)y + (\sin \alpha)z = 1$. - i) Find a trigonometric equation for α (in other terms: α should be a solution of this equation) [4] - ii) In the original IB question (paper 2) it was asked to give a value of α . That can be done only using the function SOLVE of your calculator. If you have a Ti calculator, you can try to follow the instructions in the frame below [+2] iii) If $\alpha = \frac{3\pi}{2}$ rad, what are the coordinates of I, the intersection between the line and the plane? [4] Two lines, L_1 and L_2 , intersect at point P. Point A(2t, 8, 3), where t > 0, lies on L_2 . This is shown in the following diagram. ## diagram not to scale The acute angle between the two lines is $\frac{\pi}{3}$. The direction vector of L_1 is $\begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$, and $\overrightarrow{PA} = \begin{pmatrix} 2t \\ 0 \\ 3+t \end{pmatrix}$. (a) Show that $$4t = \sqrt{10t^2 + 12t + 18}$$. [4] (b) Find the value of $$t$$. [4] (c) Hence or otherwise, find the shortest distance from A to $$L_1$$. [4] (d) Find a point B that lies on $$L_1$$ [2] (e) Find a vector equation of the plane $$\Pi_{ABC}$$ that contains A B an C [4] (f) Find a cartesian equation of the plane $$\Pi_{\text{\tiny ABC}}$$ [3] (g) From (f) otherwise, find a vector $$\vec{n}$$ perpendicular to L_1 and L_2 [3] Question 3 (Kognity) [5 marks] A plane, which is parallel to the plane x-2y+3z=2, passes through the points (-1,-1,1) and (-1,2,k). Find the value of k.