Test 4 Thursday 27.02.2025 Maths $IB_1 HL$ Subjects : Equations of Lines 2D \$ 3D $Total: \hspace{0.5cm} /\hspace{0.1cm} 19$ Name: Question 1 [9 marks] The line L_1 is given by the cartesian form $\frac{x-3}{2} = \frac{z-3}{6} = \frac{y+1}{-3}$ - i) Find a director vector \vec{v}_1 for L_1 - ii) Find a point A of L_1 - iii) Show that point B:(1,0,4) is not a point of L_1 - iv) Give a vector equation of the line L_2 , given that L_2 is parallel to L_1 and passes through B. Question 2 [6 marks] The line L is given by the $cartesian form <math display="inline">\frac{x-13}{12} = \frac{y+1}{-3} = \frac{z-k}{6}$ - i) Find k such that L passes through point P:(1,2,3) - ii) Then find x_Q and z_Q assuming that point $Q:(x_Q,-1,z_Q)$ in on L. - iii) The line L_{AB} passes trough A(5,-1,3) et B(1,0,1) Find a director vector for L_{AB} , and write a vector equation of L_{AB} . Can we said L_{AB} is parallel to L? (please justify your answer) Question 3 [4 marks] A racing car is moving parallel to the line $\frac{x-18}{3} = \frac{y+19}{-4} = \frac{z+20}{5}$ at a speed of $\sqrt{200}$ m/s. (the position is given in *meter* and the time t in *second*) What is the *velocity* of the car? Bonus [+3] Back to question 2: We know that P and Q both lie on the line L. Find the point R on L, such that distance PR = distance PQ.