Test 4

Thursday 27.02.2025

Maths $IB_1 HL$

Subjects : Equations of Lines 2D \$ 3D $Total: \hspace{0.5cm} /\hspace{0.1cm} 19$

Name:

Question 1 [9 marks]

The line L_1 is given by the cartesian form $\frac{x-3}{2} = \frac{z-3}{6} = \frac{y+1}{-3}$

- i) Find a director vector \vec{v}_1 for L_1
- ii) Find a point A of L_1
- iii) Show that point B:(1,0,4) is not a point of L_1
- iv) Give a vector equation of the line L_2 , given that L_2 is parallel to L_1 and passes through B.

Question 2 [6 marks]

The line L is given by the $cartesian form <math display="inline">\frac{x-13}{12} = \frac{y+1}{-3} = \frac{z-k}{6}$

- i) Find k such that L passes through point P:(1,2,3)
- ii) Then find x_Q and z_Q assuming that point $Q:(x_Q,-1,z_Q)$ in on L.
- iii) The line L_{AB} passes trough A(5,-1,3) et B(1,0,1) Find a director vector for L_{AB} , and write a vector equation of L_{AB} . Can we said L_{AB} is parallel to L? (please justify your answer)

Question 3 [4 marks]

A racing car is moving parallel to the line $\frac{x-18}{3} = \frac{y+19}{-4} = \frac{z+20}{5}$ at a speed of $\sqrt{200}$ m/s.

(the position is given in *meter* and the time t in *second*)

What is the *velocity* of the car?

Bonus [+3]

Back to question 2: We know that P and Q both lie on the line L.

Find the point R on L, such that distance PR = distance PQ.