

Christmas Examination

Wednesday 11 Dec. 2024

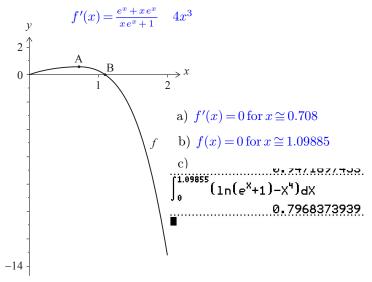
Maths SL IB₂
Part 2
(7 Problems 55 marks)

ANSWERS

A calculator is allowed for this second part

Problem 1 [/ 6 marks]

The function f is defined as $f(x) = \ln(xe^x + 1) - x^4$, for $0 \le x \le 2$. The graph of f is shown in the following diagram.



The graph of f has a local maximum at point A. The graph intersects the x-axis at the origin and at point B.

(a) Find the coordinates of A. [2]

(b) Find the *x*-coordinate of B. [1]

(c) Find the total area enclosed by the graph of f, the x-axis and the line x = 2. [3]

Problem 2 [/ 2 marks]

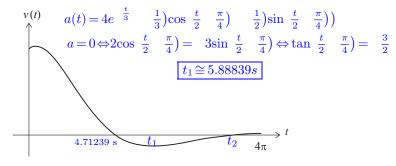
A particle moves along a straight line. Its displacement, s metres, from a fixed point S after time t seconds is given by $s(t) = 4.3 \sin\left(\sqrt{3t+5}\right)$, where $0 \le t \le 10$.

The particle first comes to rest after q seconds.

(a) Find the value of q . $v(t)=\frac{4.3\cos(\sqrt{3t+5})\cdot 3}{2\sqrt{3t+1}}$ v(t)=0 for t=q=18.895s [2]

Problem 3 [/4 marks]

A particle moves in a straight line such that its velocity, $v \, \text{m s}^{-1}$, at time t seconds is given by $v\left(t\right) = 4 \text{e}^{-\frac{t}{3}} \cos\left(\frac{t}{2} - \frac{\pi}{4}\right)$, for $0 \le t \le 4\pi$. The graph of v is shown in the following diagram.



Let t_1 be the first time when the particle's **acceleration** is zero.

(a) Find the value of t_1 . [2]

Let t_2 be the **second** time when the particle is instantaneously at rest.

(b) Find the value of t_2 . $\boxed{t_2 = 10.9956 \text{ s}}$ [2]

Problem 4 [/ 16 marks]

Consider a function f. The line L_1 with equation y=3x+1 is a tangent to the graph of f when x=2.

(a) (i) Write down f'(2). f'(2)=3 (as 3 is the gradient of the tangent at x=2)

(ii) Find
$$f(2)$$
. $f(2) = 7$ [4]

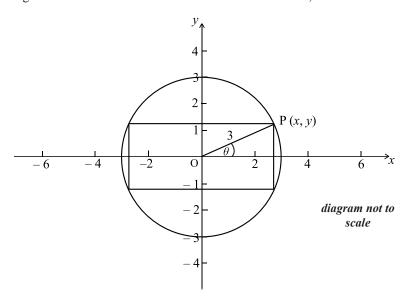
Let $g(x) = f(x^2 + 1)$ and P be the point on the graph of g where x = 1.

- (b) Show that the graph of g has a gradient of g at g. At g, $g'(x) = f'(x^2 + 1) \times 2x = 6$ [5]
- (c) Let L_2 be the tangent to the graph of g at P. L_1 intersects L_2 at the point Q. Find the y-coordinate of Q. $L_1: y = 3x + 1 \\ L_2: y = 6x + 1$ intersection at (0,1)

Problem 5

/ 13 marks]

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.



The point P(x, y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$.

Write down an expression in terms of θ for

(i)
$$x$$
; $x = 3\cos(\theta)$

(ii)
$$y$$
. $y = 3\sin(\theta)$ [2 marks]

Let the area of the rectangle be A.

(b) Show that
$$A = 18\sin 2\theta$$
. $A = xy = 9\cos(\theta)\sin(\theta) = 18\sin(2\theta)$ [3 marks]

(c) (i) Find
$$\frac{\mathrm{d}A}{\mathrm{d}\theta}$$
. $\boxed{\frac{dA}{d\theta} = 36\cos(2\theta)}$ and $\frac{d^2A}{d\theta^2} = 72\sin(2\theta)$

- Hence, find the exact value of θ which maximizes the area of (ii)
- the rectangle. $\cos(2\theta) = 0$ for $2\theta = \frac{\pi}{2}$ \Rightarrow $\theta = \frac{\pi}{4}$ (iii) Use the second derivative to justify that this value of θ does give a maximum. $\frac{d^2A}{d\theta^2}\frac{\pi}{4} = 72\sin\frac{\pi}{2} < 0 \Rightarrow \max!$ [8 marks]

Problem 6 [/ 8 marks]

Notice $(f \circ g)(x)$ is a notation for f(g(x))

Let $f(x) = x^2 - 1$ and $g(x) = x^2 - 2$, for $x \in \mathbb{R}$. a) $f(g(x)) = (x^2 - 2)^2 - 1 = x^3 - 4x^2 + 3$

a)
$$f(q(x)) = (x^2 2)^2 1 = x^3 4x^2 + 3$$

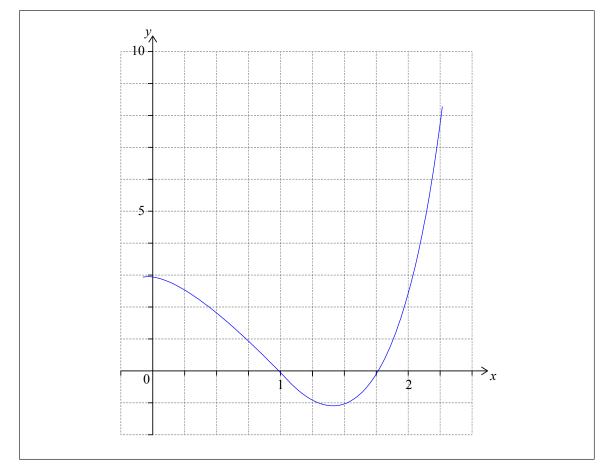
(a) Show that $(f \circ g)(x) = x^4 - 4x^2 + 3$.

b) see the curve

[2]

(b) On the following grid, sketch the graph of $(f \circ g)(x)$, for $0 \le x \le 2.25$.

[3]

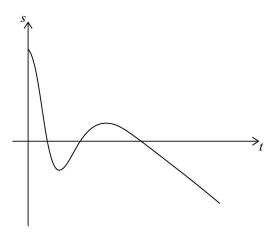


The equation $(f \circ g)(x) = k$ has exactly two solutions, for $0 \le x \le 2.25$. Find the possible values of k .

[3]

Problem 7 [/ 6 marks]

Particle A is moving along a straight line such that its displacement from a point P, after t seconds, is given by $s_{\rm A}=15-t-6t^3{\rm e}^{-0.8t}$, $0\le t\le 25$. This is shown in the following diagram.



(a) Find the initial displacement of particle A from point P. s(0) = 15m [2]

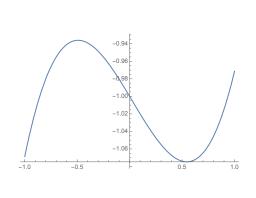
(b) Find the value of t when particle A first reaches point P. s = 0 for t = 6.79321s [2]

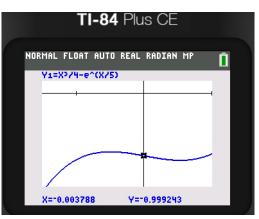
(c) Find the value of t when particle A first changes direction. $v(t) = 1 18t^2e^{-0.8t} + 4.8t^3e^{-0.8t}$ [2]

$$v(t) = 0$$
 at $t = 10.0145s$

Bonus [+5]

The figure below shows the graph of $f(x) = \frac{x^3}{4}$ $e^{\frac{x}{5}}$, for 1 < x < 1





Using your calculator, we find the x of the inflexion point, with four significant digits.