

Christmas Examination

Wednesday 11 Dec.2024

(7 Problems 55 marks)

Name	:	

A calculator **is allowed** for this second part

Problem 1 [/ 6 marks]

The function f is defined as $f(x) = \ln(xe^x + 1) - x^4$, for $0 \le x \le 2$. The graph of f is shown in the following diagram.

The graph of f has a local maximum at point A. The graph intersects the x-axis at the origin and at point B.

- (a) Find the coordinates of A. [2]
- (b) Find the *x*-coordinate of B. [1]
- (c) Find the total area enclosed by the graph of f, the x-axis and the line x = 2. [3]

Problem 2 [/ 2 marks]

A particle moves along a straight line. Its displacement, s metres, from a fixed point O after time t seconds is given by $s(t) = 4.3 \sin\left(\sqrt{3t+5}\right)$, where $0 \le t \le 10$.

The particle first comes to rest after q seconds.

(a) Find the value of q. [2]

Problem 3

A particle moves in a straight line such that its velocity, $v \, \text{m} \, \text{s}^{-1}$, at time t seconds is given by $v\left(t\right) = 4 \text{e}^{-\frac{t}{3}} \cos\left(\frac{t}{2} - \frac{\pi}{4}\right)$, for $0 \le t \le 4\pi$. The graph of v is shown in the following diagram.

Let t_1 be the first time when the particle's **acceleration** is zero.

(a) Find the value of t_1 .

[2]

/ 4 marks]

Let t_2 be the **second** time when the particle is instantaneously at rest.

(b) Find the value of t_2 .

[2]

Problem 4 [/ 16 marks]

Consider a function f. The line L_1 with equation y=3x+1 is a tangent to the graph of f when x=2.

(a) (i) Write down f'(2).

(ii) Find f(2). [4]

Let $g(x) = f(x^2 + 1)$ and P be the point on the graph of g where x = 1.

(b) Show that the graph of g has a gradient of g at g. [5]

(c) Let L_2 be the tangent to the graph of g at P. L_1 intersects L_2 at the point Q. [7]

Problem 5 [/ 13 marks]

A rectangle is inscribed in a circle of radius 3 cm and centre O, as shown below.

The point P(x, y) is a vertex of the rectangle and also lies on the circle. The angle between (OP) and the x-axis is θ radians, where $0 \le \theta \le \frac{\pi}{2}$.

- (a) Write down an expression in terms of θ for
 - (i) x;
 - (ii) y. [2 marks]

Let the area of the rectangle be A.

- (b) Show that $A = 18\sin 2\theta$. [3 marks]
- (c) (i) Find $\frac{dA}{d\theta}$.
 - (ii) Hence, find the exact value of θ which maximizes the area of the rectangle.
 - (iii) Use the second derivative to justify that this value of θ does give a maximum. [8 marks]

Problem 6 [/ 8 marks]

Notice $(f \circ g)(x)$ is a notation for f(g(x))

Let $f(x) = x^2 - 1$ and $g(x) = x^2 - 2$, for $x \in \mathbb{R}$.

(a) Show that
$$(f \circ g)(x) = x^4 - 4x^2 + 3$$
. [2]

(b) On the following grid, sketch the graph of $(f \circ g)(x)$, for $0 \le x \le 2.25$. [3]

(c) The equation $(f \circ g)(x) = k$ has exactly two solutions, for $0 \le x \le 2.25$. Find the possible values of k.

[3]

Problem 7 [/ 6 marks]

Particle A is moving along a straight line such that its displacement from a point P, after t seconds, is given by $s_{\rm A}=15-t-6t^3{\rm e}^{-0.8t}$, $0\le t\le 25$. This is shown in the following diagram.

(a) Find the initial displacement of particle A from point P. [2]

(b) Find the value of *t* when particle A first reaches point P. [2]

(c) Find the value of t when particle A first changes direction. [2]

Bonus [+5]

The figure below shows the graph of $f(x) = \frac{x^3}{4} - e^{\frac{x}{5}}$, for -1 < x < 1

Using your calculator, find the x of the inflexion point, with four significant digits.