Christmas Examination Wednesday 11 Dec.2024 ## $\begin{array}{c} \text{Maths SL } IB_2 \\ \textbf{Part 1} \end{array}$ (7 Problems 93 marks) A calculator is not allowed for this first part | Treated and the first show the first part | | |---|-------------------------| | Problem 1 | $[/9\mathrm{marks}]$ | | We consider the function $f(x)=2\cos(x)e^x$ | | | a) Find the derivative of $f(x)$ | | | b) What is the gradient of the tangent to the curve $y = f(x)$, at $x = 0$? | | | c) The graph of f has an horizontal tangent line at x_0 , with $0 < x_0 < \frac{\pi}{2}$ | | | Find x_0 . | | | Problem 2 | $[/12\mathrm{marks}]$ | | Let us consider | | | $f(x) = (x-1)^2 e^{2x}$ | | | 1) Find the values of x such that the tangent to the curve of equation $y = f(x)$ is | horizontal. | | 2) Show that $f''(x) = 2e^{2x}(2x^2 - 1)$ | | | 3) Using your previous result, or otherwise, determine for each of your solution | ns to (1) | | whether it is a maximum or a maximum. | | | Problem 3 | $[~~/~16~{\rm marks}~]$ | | Consider a function f . The line L_1 with equation $y = 3x + 1$ is a tangent to the graph o when $x = 2$. | f f | | (a) (i) Write down $f'(2)$. | | | (ii) Find $f(2)$. | [4] | | Let $g(x) = f(x^2 + 1)$ and P be the point on the graph of g where $x = 1$. | | | (b) Show that the graph of g has a gradient of 6 at P . | [5] | | (c) Let L_2 be the tangent to the graph of g at P . L_1 intersects L_2 at the point Q . Find the y -coordinate of Q . | [7] | Problem 4 [/ 14 marks] A tennis ball is dropped from an hight tower. It velocity is given by $v(t) = 72(1 - e^{-0.16t})$ where v is in m/s and t in seconds a) Find the velocity of the ball at [2] - i) t = 0 - ii) $t = 8 \sec$ - b) [6] - i) Find an expression for the acceleration a as a function of t. - ii) What is the value of a when t = 0? - **c**) - i) As t becomes large, what values does v approach? - ii) As t becomes large, what values does a approach? - iii) Explain the relationship between the answers to part (i) and part (iii) Problem 5 [/ 15 marks] A closed cylindrical can with radius r centimetres and height h centimetres has a volume of $20\pi~{\rm cm}^3$. diagram not to scale (a) Express h in terms of r. [2] The material for the base and top of the can costs 10 cents per cm² and the material for the curved side costs 8 cents per cm². The total cost of the material, in cents, is C. (b) Show that $$C = 20\pi r^2 + \frac{320\pi}{r}$$. [4] (c) Given that there is a minimum value for C, find this minimum value in terms of π . [9] **Problem 6** [/ 13 marks] Find the hight h and the base radius r of the largest right circular cylinder that can be made by cutting it away from a sphere with a radius of R. Problem 7 [/ 14 marks] The solid shown in the following diagram is comprised of a cylinder and two hemispheres. The cylinder has height $h\,\mathrm{cm}$ and radius $x\,\mathrm{cm}$. The hemispheres fit exactly onto either end of the cylinder. The volume of the cylinder is $41 \, \text{cm}^3$. (a) Show that the total surface area, $S \text{ cm}^2$, of the solid is given by $S = \frac{82}{x} + 4\pi x^2$. [3] The total surface area of the solid has a local maximum or a local minimum value when x = a. - (b) (i) Find an expression for $\frac{dS}{dx}$. - (ii) Hence, find the **exact** value of a. [5] - (c) (i) Find an expression for $\frac{d^2S}{dx^2}$. - (ii) Use the second derivative of S to justify that S is a minimum when x = a. - (iii) Find the minimum surface area of the solid. [6]