

Christmas Examination

Wednesday 11 Dec.2024

$\begin{array}{c} \text{Maths SL } IB_2 \\ \textbf{Part 1} \end{array}$

(7 Problems 93 marks)

A calculator is not allowed for this first part

Treated and the first show the first part	
Problem 1	$[/9\mathrm{marks}]$
We consider the function $f(x)=2\cos(x)e^x$	
a) Find the derivative of $f(x)$	
b) What is the gradient of the tangent to the curve $y = f(x)$, at $x = 0$?	
c) The graph of f has an horizontal tangent line at x_0 , with $0 < x_0 < \frac{\pi}{2}$	
Find x_0 .	
Problem 2	$[/12\mathrm{marks}]$
Let us consider	
$f(x) = (x-1)^2 e^{2x}$	
1) Find the values of x such that the tangent to the curve of equation $y = f(x)$ is	horizontal.
2) Show that $f''(x) = 2e^{2x}(2x^2 - 1)$	
3) Using your previous result, or otherwise, determine for each of your solution	ns to (1)
whether it is a maximum or a maximum.	
Problem 3	$[~~/~16~{\rm marks}~]$
Consider a function f . The line L_1 with equation $y = 3x + 1$ is a tangent to the graph o when $x = 2$.	f f
(a) (i) Write down $f'(2)$.	
(ii) Find $f(2)$.	[4]
Let $g(x) = f(x^2 + 1)$ and P be the point on the graph of g where $x = 1$.	
(b) Show that the graph of g has a gradient of 6 at P .	[5]
(c) Let L_2 be the tangent to the graph of g at P . L_1 intersects L_2 at the point Q . Find the y -coordinate of Q .	[7]

Problem 4 [/ 14 marks]

A tennis ball is dropped from an hight tower.

It velocity is given by

 $v(t) = 72(1 - e^{-0.16t})$ where v is in m/s and t in seconds

a) Find the velocity of the ball at

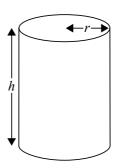
[2]

- i) t = 0
- ii) $t = 8 \sec$
- b) [6]
 - i) Find an expression for the acceleration a as a function of t.
 - ii) What is the value of a when t = 0?
- **c**)
- i) As t becomes large, what values does v approach?
 - ii) As t becomes large, what values does a approach?
 - iii) Explain the relationship between the answers to part (i) and part (iii)

Problem 5 [/ 15 marks]

A closed cylindrical can with radius r centimetres and height h centimetres has a volume of $20\pi~{\rm cm}^3$.

diagram not to scale



(a) Express h in terms of r. [2]

The material for the base and top of the can costs 10 cents per cm² and the material for the curved side costs 8 cents per cm². The total cost of the material, in cents, is C.

(b) Show that
$$C = 20\pi r^2 + \frac{320\pi}{r}$$
. [4]

(c) Given that there is a minimum value for C, find this minimum value in terms of π . [9]

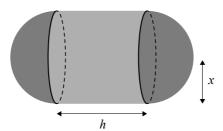
Problem 6 [/ 13 marks]

Find the hight h and the base radius r of the largest right circular cylinder that can be made by cutting it away from a sphere with a radius of R.



Problem 7 [/ 14 marks]

The solid shown in the following diagram is comprised of a cylinder and two hemispheres. The cylinder has height $h\,\mathrm{cm}$ and radius $x\,\mathrm{cm}$. The hemispheres fit exactly onto either end of the cylinder.



The volume of the cylinder is $41 \, \text{cm}^3$.

(a) Show that the total surface area, $S \text{ cm}^2$, of the solid is given by $S = \frac{82}{x} + 4\pi x^2$. [3]

The total surface area of the solid has a local maximum or a local minimum value when x = a.

- (b) (i) Find an expression for $\frac{dS}{dx}$.
 - (ii) Hence, find the **exact** value of a. [5]
- (c) (i) Find an expression for $\frac{d^2S}{dx^2}$.
 - (ii) Use the second derivative of S to justify that S is a minimum when x = a.
 - (iii) Find the minimum surface area of the solid. [6]