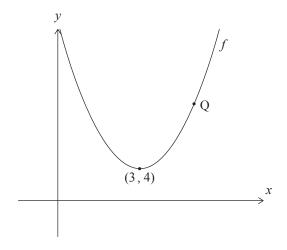


Christmas Examination

Wednesay 14 Dec. 2022 Duration: 90 min

$\underset{\mathbf{Part}\ \mathbf{1}}{\mathrm{Maths}\ \mathrm{SL}\ \mathrm{IB}_2}$


(7 Problems 74 marks)

A calculator is not allowed for this first part

Problem 1 [/ 15 marks]

The following diagram shows part of the graph of a quadratic function f.

The graph of f has its vertex at (3,4), and it passes through point Q as shown.

(a) Write down the equation of the axis of symmetry.

[1]

- (b) The function can be written in the form $f(x) = a(x h)^2 + k$.
 - (i) Write down the values of h and k.
 - (ii) Point Q has coordinates (5, 12). Find the value of a.

[4]

The line L is tangent to the graph of f at Q.

(c) Find the equation of L.

[4]

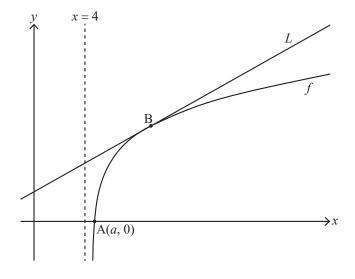
Now consider another function y = g(x). The derivative of g is given by g'(x) = f(x) - d, where $d \in \mathbb{R}$.

(d) Find the values of d for which g is an increasing function.

[3]

(e) Find the values of x for which the graph of g is concave-up.

[3]

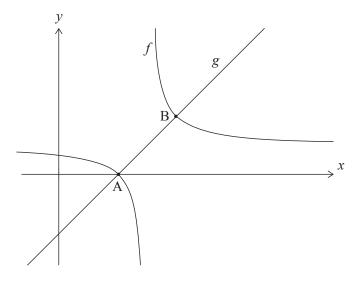

Problem 2 [/ 6 marks]

Given that $\frac{\mathrm{d}y}{\mathrm{d}x} = \cos\left(x - \frac{\pi}{4}\right)$ and y = 2 when $x = \frac{3\pi}{4}$, find y in terms of x.

Problem 3 [/ 9 marks]

Consider the function f defined by $f(x) = \ln(x^2 - 16)$ for x > 4.

The following diagram shows part of the graph of f which crosses the x-axis at point A, with coordinates (a,0). The line L is the tangent to the graph of f at the point B.

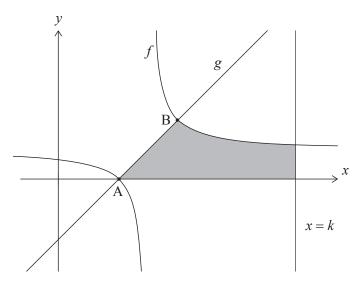

(a) Find the exact value of a. [3]

(b) Given that the gradient of L is $\frac{1}{3}$, find the x-coordinate of B. [6]

Problem 4 $\left[\right. \left. \right. / 15 \, \mathrm{marks} \, \right]$

Consider the functions $f(x) = \frac{1}{x-4} + 1$, for $x \neq 4$, and g(x) = x - 3 for $x \in \mathbb{R}$.

The following diagram shows the graphs of f and g.



The graphs of f and g intersect at points A and B. The coordinates of A are (3,0).

(a) Find the coordinates of B.

[5]

In the following diagram, the shaded region is enclosed by the graph of f, the graph of g, the x-axis, and the line x = k, where $k \in \mathbb{Z}$.

The area of the shaded region can be written as $\ln(p) + 8$, where $p \in \mathbb{Z}$.

(b) Find the value of k and the value of p.

[10]

Prob	olem	5	$[~~/~16~{ m marks}]$]
			<i>P</i> moves along the <i>x</i> -axis. The velocity of <i>P</i> is $v \text{m s}^{-1}$ at time <i>t</i> seconds, $t = 4 + 4t - 3t^2$ for $0 \le t \le 3$. When $t = 0$, <i>P</i> is at the origin O.	
(a)) (i))	Find the value of t when P reaches its maximum velocity.	
	(ii)	i)	Show that the distance of P from O at this time is $\frac{88}{27}$ metres.	[7]
(b)			ch a graph of v against t , clearly showing any points of intersection the axes.	[4]
(c)) Fi	ind	the total distance travelled by P .	[5]
Problem 6 $ [\hspace{.5cm} / \hspace{.5cm} 5 \hspace{.5cm} \text{marks} \hspace{.5cm}] $]
			ns 5 red balls and 2 white balls. ns 4 red balls and 3 white balls.	
(a) A box is chosen at random and a ball is drawn. Find the probability that the ball is red. [3]				[3]
Let A be the event that "box 1 is chosen" and let R be the event that "a red ball is drawn".				
(b)	Det	tern	nine whether events A and R are independent.	[2]
Problem 7 $ \left[\begin{array}{c} / \ 8 \ \text{marks} \end{array} \right] $]
dra	ws ma	arb	lins n marbles, two of which are blue. Hayley plays a game in which she randomly les out of the bag, one after another, without replacement. The game ends when we a blue marble.	'
(a)	Fin	nd t	he probability, in terms of $\it n$, that the game will end on her	
	(i)		first draw;	
	(ii)		second draw.	[4]
(b)	Let	t <i>n</i>	= 5. Find the probability that the game will end on her	

[4]

(i)

(ii)

third draw;

fourth draw.