

MATHS AA

Friday 14 June 2024

Total duration: 3 hours

June Exam

Total: / 138 marks

ANSWERS

Problem 1 /5 marks]

The n^{th} term of an arithmetic sequence is given by $u_n = 15 - 3n$.

(a) State the value of the first term,
$$u_1$$
. $u_1 = 12$

(b) Given that the
$$n^{th}$$
 term of this sequence is -33 , find the value of n .

(c) Find the common difference,
$$d$$
. $u_2 = 9$ then $d = u_2 - u_2 = 3$ [2]

Problem 2 /9 marks |

An arithmetic sequence has $u_1 = \log_c(r)$ and $u_2 = \log_c(r^2s)$

(a) The constant difference is
$$d = u_2 - u_1 = \log_c(r^2 s) - \log_c(r) = \log_c(\frac{r^2 s}{r})$$

= $\log_c(r s) = \log_c(r) + \log_c(s)$

(b) Let
$$r = c$$
 and $s = c^7$ Then $u_1 = \log_c(c) = 1$ and $u_2 = \log_c(c^2c^7) = 9$ and $d = 8$
Therefore $\sum_{n=1}^{5} u_n = \frac{5}{2}(2u_1 + (5-1)d) = 85$ [2]

(c) Let
$$r = c$$
 and $s = c^7$

$$\sum_{n=6}^{10} u_n = s_{10} - s_5 = \frac{5}{2} (2u_1 + (10 - 1)d) - \frac{5}{2} (2u_1 + (5 - 1)d)$$

$$= \frac{5}{2} (2 + 9 \times 8) - \frac{5}{2} (2 + 4 \times 8) = 185 - 85 = \boxed{100}$$

[/7 marks] Problem 3

Consider the binomial expansion $(x + 1)^7 = x^7 + ax^6 + bx^5 + 35x^4 + ... + 1$ where $x \ne 0$ and $a, b \in \mathbb{Z}^+$.

(a) Show that
$$b = 21$$
. $b = {7 \choose 5} = \frac{7!}{2!5!} = 21$ By the same way: $a = {7 \choose 6} = \frac{7!}{1!6!} = 7$ [2]

The third term in the expansion is the mean of the second term and the fourth term in the expansion.

the expansion.
$$7x^2 = \frac{21x^6 + 35x^4}{2} \Rightarrow 14 = 21x^4 + 35x^2 \quad \Rightarrow 3c^2 + 5c - 2 = 0 \qquad (c = x^2)$$
 (b) Find the possible values of x .
$$c = \frac{-5 \pm 7}{6} \in \left\{-2; \frac{1}{3}\right\} \quad \text{then} \quad x = \sqrt{\frac{1}{3}}$$
 [5]

Problem 4

Find the least positive value of
$$x$$
 for which $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$. $\frac{\frac{x}{2} + \frac{\pi}{3} = \frac{\pi}{4} \text{ or } \frac{7\pi}{4}}{\text{first positive : } x = \frac{17\pi}{6}$

Problem 5 [/9 marks]

The following diagram shows a sector ABC of a circle with centre A . The angle $B\hat{A}C=2\alpha$, where $0<\alpha<\frac{\pi}{2}$, and $O\hat{E}A=\frac{\pi}{2}$.

A circle with centre $\,{\rm O}\,$ and radius $\,r\,$ is inscribed in sector $\,{\rm ABC}\,$.

AB and AC are both tangent to the circle at points D and E respectively.

diagram not to scale

(a) Show that the area of the quadrilateral ADOE is $\frac{r^2}{\tan \alpha}$. [4]

- (b) (i) Find \hat{DOE} in terms of α .
 - (ii) Hence or otherwise, find an expression for the area of R.

Problem 6 /14 marks |

Consider an acute angle θ such that $\cos \theta = \frac{2}{3}$.

Find the value of

(i)
$$\sin \theta$$
; $\sin(\theta) = \sqrt{1 - \cos^2(\theta)} = \sqrt{1 - \frac{4}{9}} = \boxed{\frac{\sqrt{5}}{3}}$
(ii) $\sin 2\theta$. $\sin(2\theta) = 2\sin(\theta)\cos(\theta) = 2\frac{\sqrt{5}}{3}\frac{2}{3} = \boxed{\frac{4\sqrt{5}}{9}}$ [4]

The following diagram shows triangle ABC, with $\hat{B} = \theta$, $\hat{A} = 2\theta$, BC = a and AC = b.

(b) Show that
$$b = \frac{3a}{4}$$
. [2]

[BA] is extended to form an isosceles triangle DAC, with $\hat{D} = \theta$, as shown in the following diagram.

(c) Find the value of
$$\sin C \hat{A} D$$
. $\sin(\widehat{C} A D) = \sin(\pi - 2\theta) = \sin(2\theta) = \frac{4\sqrt{5}}{9}$ [3]
 (d) Find the area of triangle DAC, in terms of a . $A = \frac{1}{2} \left(\frac{3a}{4}\right)^2 \cdot \frac{4\sqrt{5}}{9} = \boxed{\frac{\sqrt{5}a^2}{8}}$ [5]

(d) Find the area of triangle DAC, in terms of
$$a$$
. $A = \frac{1}{2} \left(\frac{3a}{4}\right)^2 \cdot \frac{4\sqrt{5}}{9} = \boxed{\frac{\sqrt{5}a^2}{8}}$ [5]

Problem 7 [/13 marks]

Let $f(x) = 2\sin(3x) + 4$ for $x \in \mathbb{R}$.

(a) The range of
$$f$$
 is $k \le f(x) \le m$. Find k and m . $k=2$ $m=6$ [3] Let $g(x) = 5 f(2x)$.

(b) Find the range of
$$g$$
. Range $g = [10, 30]$

The function g can be written in the form $g(x) = 10\sin(bx) + c$.

- (c) (i) Find the value of b and of c. b=6 c=20
 - (ii) Find the period of g. $T = \frac{2\pi}{6} = \frac{\pi}{3}$ [5]
- (d) The equation g(x) = 12 has two solutions where $\pi \le x \le \frac{4\pi}{3}$. Find both solutions. [3]

Problem 8 [/8 marks]

(a) Assuming $\log_9(x) = \log_3(y)$, write y in terms of x.

Help: You could use the identity $\log_a(x) = \frac{\log_b(x)}{\log_b(x)}$ to transform the left member of the equation. [2]

$$\log_9(x) = \frac{\log_3(x)}{\log_3(9)} = \frac{\log_3(x)}{2} \Rightarrow \frac{\log_3(x)}{2} = \log_3(y) \quad \log_3(\sqrt{x}) = \log_3(y) \Rightarrow \qquad \boxed{y = \sqrt{x}}$$

(b) Show that
$$\log_9(\cos(2x) + 2) = \log_3(\sqrt{\cos(2x) + 2})$$
 [2]

Same way :
$$\log_9(\cos(2x) + 2) = \frac{\log_3(\cos(2x) + 2)}{2} = \log_3(\sqrt{\cos(2x) + 2})$$

(c) Hence of otherwise solve $\log_3(2\sin(x)) = \log_9(\cos(2x) + 2)$ for $0 < x < \frac{\pi}{2}$ [4]

$$\begin{aligned} \operatorname{By} \ (\operatorname{b}) : \log_3(2\sin(x)) &= \log_3\left(\sqrt{\cos(2x) + 2}\right) \Rightarrow 2\sin(x) = \sqrt{\cos(2x) + 2} \\ &\Rightarrow 4\sin^2(x) = \cos(2x) + 2 \\ &\Rightarrow 4\sin^2(x) - \cos(2x) - 2 = 0 \\ &\Rightarrow 4\sin^2(x) - (2\cos^2(x) - 1) - 2 = 0 \\ &\Rightarrow 2\cos^2(x) - 1 = 0 \\ &\Rightarrow \cos^2(x) = \frac{1}{2} \qquad \cos(x) = \pm \frac{\sqrt{2}}{2} \Rightarrow \boxed{x = \frac{\pi}{4}} \end{aligned}$$

Problem 9 /6 marks | [

The function f is defined by $f(x) = \sin qx$, where q > 0. The following diagram shows part of the graph of f for $0 \le x \le 4m$, where x is in radians. There are x-intercepts at x = 0, 2m and 4m.

- Find an expression for m in terms of q. $4m = \frac{2\pi}{q} \Rightarrow \boxed{m = \frac{\pi}{2q}}$ (hence $q = \frac{\pi}{2m}$) The function g is defined by $g(x) = 3\sin\frac{2qx}{3}$, for $0 \le x \le 6m$.
- On the axes above, sketch the graph of g. [4]

Problem 10 /7 marks |

Consider the function $f(x) = a \sin(bx)$ with $a, b \in \mathbb{Z}^+$. The following diagram shows part of the graph of f.

- Write down the value of a.
- Write down the period of f. The period is (here) $T=\pi$ as shown in the picture (b)
 - [3]
- (ii) Hence, find the value of b. $b=\frac{2\pi}{T}$ hence here b=2 Find the value of $f\left(\frac{\pi}{12}\right)$. $f\left(\frac{\pi}{12}\right)=7\sin\left(2\frac{\pi}{12}\right)=7\sin\left(\frac{\pi}{6}\right)=7\frac{1}{2}=\boxed{\frac{7}{2}}$ [3]

[1]

Problem 11 [/13 marks]

The height of water, in metres, in Dungeness harbour is modelled by the function $H(t) = a \sin(b(t-c)) + d$, where t is the number of hours after midnight, and a, b, c and d are constants, where a > 0, b > 0 and c > 0.

The following graph shows the height of the water for 13 hours, starting at midnight.

The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between $2.2\,\mathrm{m}$ and $6.8\,\mathrm{m}$.

All heights are given correct to one decimal place.

(a) Show that
$$b = \frac{\pi}{6}$$
. That is because $b = \frac{2\pi}{T}$ with $T = 12$

(b) Find the value of
$$a$$
. $a = \frac{6.8 - 2.2}{2} = 2.3$ [2]

(c) Find the value of
$$d$$
. $d = \frac{6.8 + 2.2}{2} = 4.5$ [2]

(d) Find the smallest possible value of
$$c$$
. $H(4.4) = 6.8 \Rightarrow 2.3 \sin(\frac{\pi}{6}(4.5-c)) + 4.5 = \boxed{6.8}$ [3] $\Rightarrow c = 1.5$

(e) Find the height of the water at 12:00.
$$H(12) = 2.87m$$
 [2]

(f) Determine the number of hours, over a 24-hour period, for which the tide is higher than 5 metres. with calculator solve
$$2.3\sin\left(\frac{\pi}{6}(t-1.5)\right)+4.5=5$$
 [3] you should get $t=1.91852...$ and $t=7.08147 \Rightarrow \text{answer}$ is 10.3 h

Problem 12 [/6 marks]

The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

(a) On the same axes, sketch the graph of f(-x).

[2]

(b) Another function, g, can be written in the form $g(x) = a \times f(x+b)$. The following diagram shows the graph of g.

Write down the value of a and of b.

a = -2 b = -1

[4]

Problem 13

/11 marks |

Let $g(x) = x^2 + bx + 11$. The point (-1, 8) lies on the graph of g. $\Leftrightarrow g(-1) = 8$

- (a) Find the value of b. $(-1)^2+b(-1)+11=8 \Rightarrow -b=8-11-1 \Rightarrow \boxed{b=4}$ [3]
- (b) The graph of $f(x) = x^2$ is transformed to obtain the graph of g.

 Describe this transformation. $translation by the vector <math>\begin{pmatrix} -2 \\ 7 \end{pmatrix}$ gives $(x+2)^2 + 7$ [4]
- (c) The graph of g is transformed by the two following consecutives transformations to obtain the graph of h:
 - i) a horizontal stretch of scale factor 2 that gives the curve of $g(\frac{x}{2})$
 - ii) a reflexion by the y-axis. that change the sign of x in the precedent result

Write down the function h(x). $h(x) = g(-\frac{x}{2}) = (-\frac{x}{2})^2 + 4(-\frac{x}{2}) + 11 = \boxed{\frac{x^2}{4} - 2x + 11}$

Problem 14 /6 marks /

Let f and g be functions such that g(x) = 2f(x+1) + 5.

(a) The graph of f is mapped to the graph of g under the following transformations:

vertical stretch by a factor of k, followed by a translation $\begin{pmatrix} p \\ q \end{pmatrix}$.

Write down the value of

- (i) k; 2
- (ii) p; -1
- (iii) q. [3 marks]
- (b) Let h(x) = -g(3x). The point A(6, 5) on the graph of g is mapped to the point A' on the graph of h. Find A'.

 [3 marks]

(a) The diagram shows part of the graph of the function $f(x) = \frac{q}{x-p}$. The curve passes through the point A(3,10). The line (CD) is an asymptote.

Find the value of

- (i) p; p = 2 (position of the vertical asymptote)
- (ii) q. as f(3) = 10 we have: $\frac{q}{3-2} = 10$ then p = 10
- (b) The graph of f(x) is transformed as shown in the following diagram. The point A is transformed to A' (3, -10).

Give a full geometric description of the transformation.

Reflection (axial symetry) by the vertical asymptote (x=2).

Problem 16 [/11 marks]

Let $f(x)=7+7\sin x$. Part of the graph of f is shown below.

(a) The maximal value for f(x) is 14

(b) Solve for $0 \le x < 2\pi$

[1]

(i)
$$f(x) = 7$$
 $\Rightarrow \sin x = 0$, $x = k\pi$ $x = \pi$

(ii)
$$f(x) = 0$$
 $\Rightarrow \sin x = -1$, $x = \frac{3\pi}{2} + 2k\pi$ $x = \frac{3\pi}{2}$

(c) Write down the exact value of the x – intercept of f, for $0 \le x < 2\pi$. $\left[\frac{3\pi}{2}, 0\right]$

Let
$$g(x) = 7 + 7\sin(x - \frac{\pi}{2})$$
.

The graph of f is transformed to the graph of g.

(d) Full geometric description of this transformation : Horizontal translation of $\frac{\pi}{2}$ units right