

MATHS AA

Friday 14 June 2024

Total duration: 3 hours

June Exam

Total: / 138 marks

Nom/Name

Problem 1 /5 marks] The n^{th} term of an arithmetic sequence is given by $u_n = 15 - 3n$. State the value of the first term, u_1 . [1] Given that the n^{th} term of this sequence is -33, find the value of n. (b) [2] (c) Find the common difference, d. [2] Problem 2 /9 marks] An arithmetic sequence has $u_1 = \log_c(r)$ and $u_2 = \log_c(r^2s)$ (a) Show that the constant difference is $d = \log_c(r) + \log_c(s)$ [2] (c) Let r = c and $s = c^7$ Find the value of $\sum_{n=6}^{10} u_n$ [7] Problem 3 /7 marks |

Consider the binomial expansion $(x+1)^7 = x^7 + ax^6 + bx^5 + 35x^4 + ... + 1$ where $x \ne 0$ and $a, b \in \mathbb{Z}^+$.

(a) Show that b = 21. [2]

The third term in the expansion is the mean of the second term and the fourth term in the expansion.

(b) Find the possible values of x. [5]

Problem 4 [/6 marks]

Find the least positive value of x for which $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$.

Problem 5 [/9 marks]

The following diagram shows a sector ABC of a circle with centre A . The angle $B\hat{A}C=2\alpha$, where $0<\alpha<\frac{\pi}{2}$, and $O\hat{E}A=\frac{\pi}{2}$.

A circle with centre O and radius r is inscribed in sector ABC.

AB and AC are both tangent to the circle at points D and E respectively.

diagram not to scale

(a) Show that the area of the quadrilateral ADOE is $\frac{r^2}{\tan \alpha}$. [4]

- (b) (i) Find \hat{DOE} in terms of α .
 - (ii) Hence or otherwise, find an expression for the area of $\,R_{\,\cdot\,}$

[5]

Problem 6 [/14 marks]

Consider an acute angle θ such that $\cos \theta = \frac{2}{3}$.

(a) Find the value of

(i) $\sin \theta$;

(ii) $\sin 2\theta$. [4]

The following diagram shows triangle ABC, with $\hat{B} = \theta$, $\hat{A} = 2\theta$, BC = a and AC = b.

(b) Show that $b = \frac{3a}{4}$. [2]

[BA] is extended to form an isosceles triangle DAC , with $\hat{D}=\theta,$ as shown in the following diagram.

(c) Find the value of $\sin C \hat{A} D$. [3]

(d) Find the area of triangle DAC, in terms of a. [5]

Problem 7 /13 marks |

Let $f(x) = 2\sin(3x) + 4$ for $x \in \mathbb{R}$.

- (a) All the values of f(x) are between k and m. Find the vales of k and m. [3] Let g(x) = 5 f(2x).
- (b) All the values of g(x) are between p and q. Find the vales of p and q.

The function g can be written in the form $g(x) = 10\sin(bx) + c$.

- (c) (i) Find the value of b and of c.
 - (ii) Find the period of g. [5]
- (d) The equation g(x) = 12 has two solutions where $\pi \le x \le \frac{4\pi}{3}$. Find both solutions. [3]

Problem 8 [/8 marks]

(a) Assuming $\log_9(x) = \log_3(y)$, write y in terms of x.

Help: You could use the identity $\log_a(x) = \frac{\log_b(x)}{\log_b(x)}$ to transform the left member of the equation. [2]

- (b) Show that $\log_9(\cos(2x) + 2) = \log_3(\sqrt{\cos(2x) + 2})$ [2]
- (c) Hence of otherwise solve $\log_3(2\sin(x)) = \log_9(\cos(2x) + 2)$ for $0 < x < \frac{\pi}{2}$ [4]

Problem 9

/6 marks]

The function f is defined by $f(x) = \sin qx$, where q > 0. The following diagram shows part of the graph of f for $0 \le x \le 4m$, where x is in radians. There are x-intercepts at x = 0, 2m and 4m.

(a) Find an expression for m in terms of q.

[2]

The function g is defined by $g(x) = 3\sin\frac{2qx}{3}$, for $0 \le x \le 6m$.

(b) On the axes above, sketch the graph of g.

[4]

Problem 10 [/7 marks]

Consider the function $f(x) = a\cos(bx)$, with a, $b \in \mathbb{Z}^+$. The following diagram shows part of the graph of f.

(a) Write down the value of a.

[1]

(b) (i) Write down the period of f.

(ii) Hence, find the value of b.

[3]

(c) Find the value of $f\left(\frac{\pi}{6}\right)$.

[3]

Problem 11 /13 marks |

The height of water, in metres, in Dungeness harbour is modelled by the function $H(t) = a \sin(b(t-c)) + d$, where t is the number of hours after midnight, and a, b, c and d are constants, where a > 0, b > 0 and c > 0.

The following graph shows the height of the water for 13 hours, starting at midnight.

The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between $2.2\,m$ and $6.8\,m$.

All heights are given correct to one decimal place.

(a) Show that
$$b = \frac{\pi}{6}$$
. [1]

(b) Find the value of
$$a$$
. [2]

(c) Find the value of
$$d$$
. [2]

(d) Find the smallest possible value of
$$c$$
. [3]

Problem 12 [/6 marks]

The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

(a) On the same axes, sketch the graph of f(-x).

[2]

(b) Another function, g, can be written in the form $g(x) = a \times f(x+b)$. The following diagram shows the graph of g.

Write down the value of a and of b.

[4]

Problem 13

 $/11 \; marks \; J$

Let $g(x) = x^2 + bx + 11$. The point (-1, 8) lies on the graph of g.

(a) Find the value of b.

[3]

(b) The graph of $f(x) = x^2$ is transformed to obtain the graph of g.

Describe this transformation.

[4]

(c) The graph of g is transformed by the two following consecutives transformations to obtain the graph of h:

[4]

- i) a horizontal stretch of scale factor 2
- ii) a reflexion by the y-axis.

Write down the function h(x).

Problem 14

/6 marks]

Let f and g be functions such that g(x) = 2f(x+1) + 5.

(a) The graph of f is mapped to the graph of g under the following transformations:

vertical stretch by a factor of k, followed by a translation $\begin{pmatrix} p \\ q \end{pmatrix}$.

Write down the value of

- (i) k;
- (ii) p;

(iii) q.

[3 marks]

(b) Let h(x) = -g(3x). The point A(6, 5) on the graph of g is mapped to the point A' on the graph of h. Find A'.

[3 marks]

(a) The diagram shows part of the graph of the function $f(x) = \frac{q}{x-p}$. The curve passes through the point A(3,10). The line (CD) is an asymptote.

Find the value of

- (i) *p*;
- (ii) q.
- (b) The graph of f(x) is transformed as shown in the following diagram. The point A is transformed to A'(3,-10).

Give a full geometric description of the transformation.

Problem 16 [/11 marks]

Let $f(x) = 7 + 7\sin x$. Part of the graph of f is shown below.

(a) What is the maximal value for f(x)? [1]

(b) Solve for
$$0 \le x < 2\pi$$

- (i) f(x) = 7
- (ii) f(x) = 0

(c) Write down the exact value of the
$$x$$
 – intercept of f , for $0 \le x < 2\pi$. [2]

Let $g(x) = 7 + 7\sin\left(x - \frac{\pi}{2}\right)$.

The graph of f is transformed to the graph of g.

(d) Give a full geometric description of this transformation [3]