

## Christmas Examination

## $Maths\ AA\ SL\ IB_1\ Part\ 1$



| Tot: | / 40 |
|------|------|



Name : \_\_\_\_\_

You are <u>not</u> permitted access to any calculator for this paper.

Problem 1 [ /6 marks]

Solve the following equations:

i) 
$$\frac{x(17-2x)-1}{5} = 4$$
 [2]

ii) 
$$\frac{\log_3(x)(17 - \log_3(x^2)) - 1}{5} = \log_2(16)$$
 [4]

Problem 2 / /6 marks/

- (a) Calculate the value of each of the following logarithms:
  - (i)  $\log_2 \frac{1}{16}$ ;
  - (ii)  $\log_9 3$ ;
  - (iii)  $\log_{\sqrt{3}} 81$ .
- (b) It is given that  $\log_{ab}a=3$ , where  $a,b\in\mathbb{R}^+$ ,  $ab\neq 1$ .
  - (i) Show that  $\log_{ab} b = -2$ .
  - (ii) Hence find the value of  $\log_{ab} \frac{\sqrt[3]{a}}{\sqrt{b}}$ .

Problem 3 [ /4 marks]

Let us consider  $a = \log_3(2)$  and  $b = \log_3(5)$ ,  $x = \log_3(1 + \frac{3}{125})$  and  $y = \log_3(100)$ .

Find an expression for x and an expression for y, in terms of a and b.

Problem 4 / 5 marks/

The n<sup>th</sup> term of an arithmetic sequence is given by  $u_n = 15 - 3n$ .

- (a) State the value of the first  $u_1$ .
- (b) Given that the  $n^{\text{th}}$  term of this sequence is -33, find the value of n.
- (c) Find the common difference, d.

Problem 5 [ /6 marks]

An geometric sequence has first term  $u_1 = a$  and second term  $u_2 = 1a^2 - 3a$ , where a > 0.

(a) Find the  $constant\ ratio\ r$  in terms of a .

Let us consider the series  $s_n = \sum_{k=1}^n u_k$ .

- (b) Give the general term for  $s_n$ .
- (c) Find the values of a for which the sum to infinity exists.

Hint: There is a formula about this condition in the IB booklet!

Problem 6 [ /7 marks]

The expansion of  $(x+h)^8$ , where h>0, can be written as  $x^8+ax^7+bx^6+cx^5+dx^4+...+h^8$ , where a, b, c, d, ...  $\in \mathbb{R}$ .

- (a) Find an expression, in terms of h, for
  - (i) a;
  - (ii) b;

(iii) d.

(b) Given that a, b, and d are the first three terms of a geometric sequence, find the value of h. [3]

Problem 7 [ /6 marks]

Consider the binomial expansion  $(x+1)^7=x^7+ax^6+bx^5+35x^4+\ldots+1$  where  $x\neq 0$  ,  $a\neq 0$  ,  $b\neq 0$ ,  $a,b\in\mathbb{N}$ 

- (a) Show that b=21
- (b) The third term in the expansion is the mean of the second term and the fourth term in the expansion. Find the possible values of x.