

Christmas Examination

Tuesday 13 Dec. 2022

Maths AA SL IB₁ Part 2 (7 Problems)

Tot: / 40

** ANSWERS **

A graphic display calculator may be required for this paper

Problem 1 [7marks]

Consider the function f(x) = -2(x-1)(x+3), for $x \in \mathbb{R}$. The following diagram shows part of the graph of f.

- (a) For the graph of f
 - (i) find the *x*-coordinates of the *x*-intercepts;

 $S = \{-3, 1\}$

(ii) find the coordinates of the vertex.

 $V \cdot (-1.8)$

[5]

[2]

The function f can be written in the form $f(x) = -2(x - h)^2 + k$.

(b) Write down the value of h and the value of k. h = -1

$$h = -1$$
 and $k = 8$

Problem 2 [4marks]

$$\left(3x^2 - \frac{k}{x}\right)^9 = -\frac{k^9}{x^9} + \frac{27k^8}{x^6} - \frac{324k^7}{x^3} + 2268k^6 - 10206k^5x^3 + \frac{30618k^4x^6}{x^6} - 61236k^3x^9 + \dots$$

If we want the coefficient of the term in x^6 to be 6048—then $k^4 = \frac{6048}{30618}$ then $k = \frac{1}{2}$

Problem 3 [9marks]

The sum of the first *n* terms of a geometric sequence is given by $S_n = \sum_{r=1}^n \frac{2}{3} \left(\frac{7}{8}\right)^r$.

(a) Find the first term of the sequence,
$$u_1$$
. $u_1 = S_2 = \frac{2}{3} \left(\frac{7}{8}\right) = \boxed{\frac{7}{12}}$ [2]

(b) Find
$$S_{\infty}$$
. $S_n = u_1 \frac{\left(\frac{7}{8}\right)^n - 1}{\left(\frac{7}{8}\right) - 1} \Rightarrow S_{\infty} = \frac{7}{12} \frac{0 - 1}{\left(\frac{7}{8}\right) - 1} = \frac{7}{12} \cdot \frac{1}{\frac{1}{8}} = \boxed{\frac{14}{3}}$ [3]

(c) Find the least value of
$$n$$
 such that $S_{\infty} - S_n < 0.001$. $\Leftrightarrow S_n = \frac{56}{13} - \frac{1}{1000}$ [4]

$$\Leftrightarrow \frac{7}{12} \frac{\left(\frac{7}{8}\right)^n - 1}{\left(\frac{7}{8}\right) - 1} = \frac{13997}{3000} \quad \Leftrightarrow \frac{\left(\frac{7}{8}\right)^n - 1}{\left(\frac{7}{8}\right) - 1} = \frac{13997}{1750} \Leftrightarrow \left(\frac{7}{8}\right)^n = 1 - \frac{13997}{14000} = \frac{3}{14000} \Leftrightarrow n = \log_{\frac{7}{8}} \left(\frac{3}{14000}\right) = 63.2675$$
 as n is an integer, $n = 64$

Problem 4 [5marks]

$$u_n = 60 - 2.5(n - 1) = 62.5 - 2.5n$$

(a)
$$u_k = 0 \Leftrightarrow 62.5 - 2.5k = 0 \Leftrightarrow k = \frac{62.5}{2.5} = 25$$

(b)
$$S_n = \frac{n}{2}(2 \times 60 + (n-1) \times (-2.5)) = n(60 - (n-1) \times \frac{5}{4}) = -\frac{5}{4}n^2 + (60 + \frac{5}{4})n = n(\frac{245}{4} - \frac{5}{4}n)$$

then $S_n = 0$ for n = 0 or n = 49

then maximal value for n close to $\frac{49}{2}$, that is : $S_{24} = S_{25} = 750$

Problem 5 [7marks]

Consider the graph of the function $f(x) = 2\sin x$, $0 \le x < 2\pi$. The graph of f intersects the line y = -1 exactly twice, at point A and point B. This is shown in the following diagram.

Find the x-coordinate of A and of B.

Consider the graph of $g(x) = 2\sin px$, $0 \le x < 2\pi$, where p > 0.

Find the greatest value of p such that the graph of g does not intersect the line y = -1.

Problem 6 [4marks]

Points A and B lie on the circle and $A\hat{O}B = 1.9$ radians.

The radius is r = 1.

diagram not to scale

Problem 7 [6marks]

The following diagram shows the graph of $f(x) = a \sin bx + c$, for $0 \le x \le 12$.

The graph of f has a minimum point at (3,5) and a maximum point at (9,17).

- (a) (i) Find the value of c. c=11
 - (ii) Show that $b = \frac{\pi}{6}$. The period is $T = 12 = \frac{2\pi}{b} \Rightarrow b = \frac{\pi}{6}$
 - (iii) Find the value of a. a = 6