	Maths AA SL IB_1 Part 2 (7 Problems)	Tuesday 13 Dec. 2022
	Tot: / 40	Name :
A graphic di	splay calculator may be required	for this paper

Christmas Examination

Problem 1

[7marks]

Consider the function f(x) = -2(x-1)(x+3), for $x \in \mathbb{R}$. The following diagram shows part of the graph of f.

- (i) find the *x*-coordinates of the *x*-intercepts;
- (ii) find the coordinates of the vertex. [5]

The function *f* can be written in the form $f(x) = -2(x - h)^2 + k$.

(b) Write down the value of h and the value of k. [2]

Problem 2

Consider the expansion of $\left(3x^2-\frac{k}{x}\right)^9$, where k > 0.

The coefficient of the term in x^6 is 6048. Find the value of k.

Problem 3

The sum of the first *n* terms of a geometric sequence is given by $S_n = \sum_{r=1}^n \frac{2}{3} \left(\frac{7}{8}\right)^r$.

- (a) Find the first term of the sequence, u_1 .
- (b) Find S_{∞} . [3]
- (c) Find the least value of *n* such that $S_{\infty} S_n < 0.001$. [4]

[4marks]

[9marks]

[2]

Problem 4

An arithmetic sequence has first term 60 and common difference -2.5 .			
(a) Given that the k th term of the sequence is zero, find the value of k .	[2]		
Let S_n denote the sum of the first <i>n</i> terms of the sequence.			
(b) Find the maximum value of S_n .	[3]		

Problem 5

[5marks]

Consider the graph of the function $f(x) = 2 \sin x$, $0 \le x < 2\pi$. The graph of f intersects the line y = -1 exactly twice, at point A and point B. This is shown in the following diagram.

Find the *x*-coordinate of A and of B. (a)

Consider the graph of $g(x) = 2 \sin px$, $0 \le x < 2\pi$, where p > 0.

Find the greatest value of p such that the graph of g does not intersect the line y = -1. (b) [3]

Problem 6

Points A and B lie on the circle and AOB = 1.9 radians.

diagram not to scale

The radius is r = 1. Calculate the distance AB.

[4marks]

[7marks]

[4]

The following diagram shows the graph of $f(x) = a \sin bx + c$, for $0 \le x \le 12$.

The graph of f has a minimum point at (3, 5) and a maximum point at (9, 17).

- (a) (i) Find the value of c.
 - (ii) Show that $b = \frac{\pi}{6}$.
 - (iii) Find the value of *a*.

[6]