

Christmas Examination

Maths AA SL IB_{1} Part 2
(7 Problems)
Tot: $\quad / 40$
Name: \qquad
A graphic display calculator may be required for this paper

Problem 1

Consider the function $f(x)=-2(x-1)(x+3)$, for $x \in \mathbb{R}$. The following diagram shows part of the graph of f.

(a) For the graph of f
(i) find the x-coordinates of the x-intercepts;
(ii) find the coordinates of the vertex.

The function f can be written in the form $f(x)=-2(x-h)^{2}+k$.
(b) Write down the value of h and the value of k.

Problem 2

Consider the expansion of $\left(3 x^{2}-\frac{k}{x}\right)^{9}$, where $k>0$.
The coefficient of the term in x^{6} is 6048 . Find the value of k.

Problem 3

The sum of the first n terms of a geometric sequence is given by $S_{n}=\sum_{r=1}^{n} \frac{2}{3}\left(\frac{7}{8}\right)^{r}$.
(a) Find the first term of the sequence, u_{1}.
(b) Find S_{∞}.
[3]
(c) Find the least value of n such that $S_{\infty}-S_{n}<0.001$.

Problem 4

An arithmetic sequence has first term 60 and common difference -2.5 .
(a) Given that the k th term of the sequence is zero, find the value of k.
[2]

Let S_{n} denote the sum of the first n terms of the sequence.
(b) Find the maximum value of S_{n}.

Problem 5

Consider the graph of the function $f(x)=2 \sin x, 0 \leq x<2 \pi$. The graph of f intersects the line $y=-1$ exactly twice, at point A and point B . This is shown in the following diagram.

(a) Find the x-coordinate of A and of B .

Consider the graph of $g(x)=2 \sin p x, 0 \leq x<2 \pi$, where $p>0$.
(b) Find the greatest value of p such that the graph of g does not intersect the line $y=-1$.

Problem 6

Points A and B lie on the circle and $\mathrm{AOB}=1.9$ radians.

The radius is $r=1$. Calculate the distance AB .

The following diagram shows the graph of $f(x)=a \sin b x+c$, for $0 \leq x \leq 12$.

The graph of f has a minimum point at $(3,5)$ and a maximum point at $(9,17)$.
(a) (i) Find the value of c.
(ii) Show that $b=\frac{\pi}{6}$.
(iii) Find the value of a.

