

Christmas Examination

$Maths\ AA\ SL\ IB_1\ Part\ 1$

(7 Problems)

Tot:	/ 42

Name : ______

You are not permitted access to any calculator for this paper.

Problem 1	/ 5marks
The n th term of an arithmetic sequence is given by $u_n = 15 - 3n$.	
(a) State the value of the first term, u_1 .	[1]
(b) Given that the n^{th} term of this sequence is -33 , find the value of n .	[2]
(c) Find the common difference, d .	[2]
Problem 2	/ 5marks
Consider any three consecutive integers, $n-1$, n and $n+1$.	
(a) Prove that the <i>sum</i> of these three integers is always divisible by 3.	
(b) Prove that the <i>sum</i> of the <u>squares</u> of these three integers is never divisible by	y 3.
Problem 3	/ 7marks
Consider the binomial expansion $(x+1)^7 = x^7 + ax^6 + bx^5 + 35x^4 + + 1$ where $x \neq 0$ and $a, b \in \mathbb{Z}^+$	
(a) Show that $b=21$.	
The third term in the expansion is the $mean^{\star}$ of the second term and the fourth	term
in the expansion. (*: The mean of m and n is $\frac{m+1}{2}$	$\frac{-n}{n}$)
(b) Find the possible values of x .	
Problem 4	/ 6marks
(a) Show that the equation $2\cos^2(x) + 5\sin(x) = 4$ may be written in the form $2\sin^2(x) - 5\sin(x) + 2 = 0$.	

(b) Hence, solve the equation $2\cos^2(x) + 5\sin(x) = 4$, $0 \le x \le 3\pi$.

Problem 5 / 6marks

Find the least positive value of x for which $\cos\left(\frac{x}{2} + \frac{\pi}{3}\right) = \frac{1}{\sqrt{2}}$

Hint : You are supposed to know the exact values of α such that $\cos(\alpha) = \frac{1}{\sqrt{2}}$

Problem 6 / 6marks

(a) Show that
$$2x-3-\frac{6}{x-1}=\frac{2x^2-5x-3}{x-1}$$
, $x \in \mathbb{R}$, $x \ne 1$. [2]

(b) Hence or otherwise, solve the equation $2\sin 2\theta - 3 - \frac{6}{\sin 2\theta - 1} = 0$ for $0 \le \theta \le \pi$, $\theta \ne \frac{\pi}{4}$. [5]

Problem 7 / 7marks

Solve $\cos(2x) = 5\cos(x) - 3$ for $0 \le x < 2\pi$