Maths

IB1

Examination of June 2019

Friday 13 June

$$-\operatorname{Part} 1 -$$

Name _____

12 IB's P1 Questions (tot: 84 marks)

Problem 1

[7 marks]

The following diagram shows a circle with centre ${\bf O}$ and radius r cm.

diagram not to scale

The points A and B lie on the circumference of the circle, and $\hat{AOB}=\theta$. The area of the shaded sector AOB is $12\,cm^2$ and the length of arc AB is $6\,cm$.

Find the value of r.

Problem 2

[8 marks]

An arithmetic sequence has $u_1 = \log_c(p)$ and $u_2 = \log_c(pq)$, where c > 1 and p, q > 0.

(a) Show that $d = \log_c(q)$.

[2]

(b) Let $p=c^2$ and $q=c^3$. Find the value of $\sum_{n=1}^{20} u_n$.

[6]

Problem 3

[6 marks]

In an arithmetic sequence, $u_1 = -5$ and d = 3.

(a) Find u_8 .

[2]

(b) Find the value of n for which $u_n = 67$.

[4]

Problem 4

[16 marks]

Solve the following quations:

(a)
$$\log_3(4x+1) + \log_3(x-2) - 2\log_3(3x) = 0$$

(b)
$$\log(x^2+2x-3) - 2\log(x-1) = 2$$

(c)
$$6+4^x=5\cdot 2^x$$

Problem 5

[6 marks]

Assuming $\sin(\theta) = \frac{1}{3}$ et $0 < \theta < \frac{\pi}{2}$, find the exact value of $\cos(4\theta)$.

Problem 6

[4 marks]

Consider the vectors
$$\mathbf{a} = \begin{pmatrix} 3 \\ 2p \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} p+1 \\ 8 \end{pmatrix}$.

Find the possible values of p for which a and b are parallel.

Problem 7

[6 marks]

Find the value of each of the following, giving your answer as an integer

(a)
$$\log_6(36)$$
 (b) $\log_6(4) + \log_6(9)$ (c) $\log_6(2) + \log_6(12)$

(c)
$$\log_6(2) + \log_6(12)$$

Problem 8

[5 marks]

The following diagram shows a right-angled triangle, ABC, where $\sin A = \frac{5}{13}$.

(a) Show that $\cos A = \frac{12}{13}$.

[2]

(b) Find $\cos 2A$.

[3]

Problem 9 [8 marks]

The sums of the terms of a sequence follow the pattern

$$S_1 = 1 + k$$
, $S_2 = 5 + 3k$, $S_3 = 12 + 7k$, $S_4 = 22 + 15k$, ..., where $k \in \mathbb{Z}$.

(a) Given that
$$u_1=1+k$$
, find u_2 , u_3 and u_4 . [4]

(b) Find a general expression for
$$u_n$$
. [4]

Problem 10 [11 marks]

Let $f(x) = 3x^2 - 6x + p$. The equation f(x) = 0 has two equal roots.

- (a) (i) Write down the value of the discriminant.
 - (ii) Hence, show that p = 3. [3]

The graph of f has its vertex on the x-axis.

- (b) Find the coordinates of the vertex of the graph of f. [4]
- (c) Write down the solution of f(x) = 0. [1]
- (d) The function can be written in the form $f(x) = a(x-h)^2 + k$. Write down the value of
 - (i) a;
 - (ii) h;
 - (iii) k. [3]

Problem 11 [6 marks]

Let $\pmb{u}=-3\pmb{i}+\pmb{j}+\pmb{k}$ and $\pmb{v}=m\pmb{j}+n\pmb{k}$, where $m,n\in\mathbb{R}$. Given that \pmb{v} is a unit vector perpendicular to \pmb{u} , find the possible values of m and of n.

The following diagram shows triangle ABC , with $AB=3\,cm$, $BC=8\,cm$, and $\,A\hat{B}C=\frac{\pi}{3}$.

- (a) Show that AC = 7 cm.
- (b) The shape in the following diagram is formed by adding a semicircle with diameter [AC] to the triangle.

Find the exact perimeter of this shape.

[3]

[4]

Maths

IB1

Examination of June 2019

Friday 13 June

- Part 2-

6 IB's P2 Questions (tot: 50 marks)

Problem 1 [6 marks]

The following diagram shows quadrilateral ABCD.

diagram not to scale

 $AB=11\,cm$, $BC=6\,cm$, $B\hat{A}D=59^{\circ}$, $A\hat{D}B=100^{\circ}$, and $C\hat{B}D=82^{\circ}$

(a) Find DB.

[3]

(b) Find DC.

[3]

Problem 2 [8 marks]

Let uc consider the points A(-2; 1), B(2; -2) et C(4; 4).

- (a) Find the lengths in the triangle ABC.
- (b) Find the valuers of the angles of triangle ABC.
- (c) Find the area of triangle ABC

Problem 3 [7 marks]

Triangle ABC has $a=8.1\,{\rm cm}$, $b=12.3\,{\rm cm}$ and area $15\,{\rm cm}^2$. Find the largest possible perimeter of triangle ABC.

Problem 4

[14 marks]

(a) The following diagram shows [AB], with length 2 cm. The line is divided into an infinite number of line segments. The diagram shows the first three segments.

diagram not to scale

The length of the line segments are p cm, p^2 cm, p^3 cm, ..., where 0 .

Show that $p = \frac{2}{3}$.

[5]

(b) The following diagram shows [CD], with length $b \, \mathrm{cm}$, where b > 1. Squares with side lengths $k \, \mathrm{cm}$, $k^2 \, \mathrm{cm}$, $k^3 \, \mathrm{cm}$, ..., where 0 < k < 1, are drawn along [CD]. This process is carried on indefinitely. The diagram shows the first three squares.

diagram not to scale

The **total** sum of the areas of all the squares is $\frac{9}{16}$. Find the value of b.

[9]

Problem 5

[8 marks]

At an amusement park, a Ferris wheel with diameter 111 metres rotates at a constant speed. The bottom of the wheel is k metres above the ground. A seat starts at the bottom of the wheel.

diagram not to scale

The wheel completes one revolution in 16 minutes.

(a) After 8 minutes, the seat is $117\,\mathrm{m}$ above the ground. Find k.

[2]

After t minutes, the height of the seat above ground is given by $h(t) = 61.5 + a\cos\left(\frac{\pi}{8}t\right)$, for $0 \le t \le 32$.

(b) Find the value of a.

[3]

(c) Find when the seat is $30\,\mathrm{m}$ above the ground for the third time.

[3]

Problem 6

[7 marks]

The following diagram shows the graph of a quadratic function f, for $0 \le x \le 4$.

The graph passes through the point P(0, 13), and its vertex is the point V(2, 1).

- (a) The function can be written in the form $f(x) = a(x-h)^2 + k$.
 - (i) Write down the value of h and of k.
 - (ii) Show that a = 3.

[4 marks]

(b) Find f(x), giving your answer in the form $Ax^2 + Bx + C$.

[3 marks]