

Mathematics HL

(~60min)

Tuesay 10 December 24

IB₁ Examination

b Problems (58 Marks	blems (58 Marks)
----------------------	------------------

Problem 1

[5 marks]

Solve the equation $3^{(2x-2)} = 3^x - 2$

Problem 2

[9 marks]

Consider the following sequence of equations:

Eq(1):
$$1 \cdot 2 = \frac{1}{3} (1 \cdot 2 \cdot 3)$$

Eq(2):
$$1 \cdot 2 + 2 \cdot 3 = \frac{1}{3} (2 \cdot 3 \cdot 4)$$

Eq(3):
$$1 \cdot 2 + 2 \cdot 3 + 3 \cdot 4 = \frac{1}{3} (3 \cdot 4 \cdot 5)$$

- 1) Verify these equations are correct.
- 2) Formulate a conjecture (hypothesis) for Eq(4) and verify it.
- **3)** Formulate a general conjecture for Eq(n), for any $n \in \mathbb{N}$
- 4) Demonstate your conjecture by induction.

Problem 3

[6 marks]

- 1) Using Pascal's Triangle (or otherwise), give the expansion of $(a+b)^5$ and of $(a-b)^5$
- **2)** Hence give an expression for $(a+b)^5 + (a-b)^5$
- 3) Show that (2a) is a factor of your precedant expression.

Problem 4 [8 marks]

Le us consider the sequence $\{u_n\}$ having first terms $2, 1, 3, 13, 35 \dots$ (strarting with n=1)

- 1) Is the sequence $\{u_n\}$ arithmetic, geometric or neither arithmetic nor geometric?
- **2)** Give the first four terms of the other sequence $\{g_n\}$ with general term is define by: $g_n = u_n + a_n$ where $a_n = 3 + 2n$.
- **3)** Show that g_n can be geometric.
- **4)** Assuming g_n is geometric, find $\sum_{k=5}^{10} g_k$. Help: $\sum_{j=m}^{n} (A_j \pm B_j) = \sum_{j=m}^{n} (A_j \pm B_j) \sum_{j=1}^{m-1} (A_j \pm B_j)$

Problem 5 [13 marks]

Let us consider the complex numbers $z_1 = 4e^{i\frac{\pi}{6}}$ and $z_2 = \sqrt{2}e^{i\frac{3\pi}{4}}$

- 1) Write z_1 and z_2 on the form a + bi?
- 2) What is the product $z_1^3 \cdot z_2^8$ on the form a + ib?
- 3) What is $\left(2\frac{z_2}{z_1}\right)^2$ on the form a+ib?
- **4)** Show that $\sqrt{i} = \cos \frac{\pi}{2} + i \sin \frac{\pi}{2}$
- **5)** Write $\sqrt{z_1^3 \cdot z_2^8}$ on the form a + bi

Problem 6 / 17 marks /

- 1) Let us consider $z = \frac{i}{2}$.
 - · What is |z|?
 - · Whas is θ , the argument of z?
 - . What is z^* , the *conjugate* of z?
 - . What are z^2, z^3 and z^4
 - . Write $\frac{1}{1-z}$ on the forme a+ib
- 2) Show that, for |x| < 1 $1 + x + x^2 + x^3 + x^4 + \dots$ converges to $\frac{1}{1-x}$
- 3) We will admit that $1+z+z^2+z^3+z^4+$ converge the same way for any $z\in\mathbb{C}$, if |z|<1.
 - . Give an expansion for $\frac{1}{1-z}$ with 4 terms.
 - . Simplify your precedant answer, to give it the form a+ib
 - . Consider the limit when the number of terms in the expansion becomes infinite and write the result on the form a+ib