

Christmas Examination

Maths AA SL IB₁ Part 1

(7 Problems)

Tot: / 52

ANSWERS

You are not permitted access to any calculator for this paper.

Problem 1 / 7 marks

Solve the following equation:

$$(\log_2(x^2) - \log_2(4)) \cdot \log_2(x) = \log_2(16)$$

$$(2\log_2(x) - 2) \cdot \log_2(x) = 4$$

$$2l^2 - 2l - 4 = 0 \implies l^2 - l - 2 = 0 \qquad l = 2 \text{ ou } -1$$

Problem 2 / 6 marks

The nth term of an arithmetic sequence is given by $u_n = 15 - 3n$.

(a) The value of the first term is
$$u_1=12$$

[1]

(b)
$$u_n = -33 \Rightarrow 15 - 3n = -33 \Rightarrow$$
 the value of n is $n = 16$

[2]

(c) The common difference,
$$d$$
 is $\boxed{-3}$

[2]

Problem 3 (May23 Q4)

7 marks

The sum of the first n terms of an arithmetic sequence is given by $S_n = pn^2 - qn$, where p and q are positive constants.

It is given that $S_4 = 40$ and $S_5 = 65$.

Find the value of p and the value of q.

[5]

Find the value of u_5 . (b)

[2]

and $q = 12 - 10 = \boxed{2}$

(b)
$$u_5 = S_5 - S_4 = (3 \times 25 - 2 \times 5) - (3 \times 16 - 2 \times 4) = 65 - 40 = \boxed{25}$$

Problem 4 / 8 marks

Let us consider the geometric sequence such that $u_1 = \frac{1}{3}$ and $u_3 = \frac{4}{27}$

(a)
$$r^2 = \frac{u_3}{u_1} = \frac{4}{27} \times \frac{3}{1} = \frac{4}{9} \implies r = \boxed{\frac{2}{3}}$$

(b)
$$S_n = u_1 \frac{r^n - 1}{r - 1} = \frac{1}{3} \frac{r^n - 1}{r - 1} = \frac{1}{3} \frac{\left(\frac{2}{3}\right)^n - 1}{1 - \left(\frac{2}{3}\right)} = \boxed{\left(1 - \left(\frac{2}{3}\right)^n\right)}$$

(c)
$$S_{\infty} = \boxed{1}$$

Problem 5 / 8 marks

An infinite geometric series has first term $u_1=a$ and second term $u_2=\frac{1}{4}a^2-3a$, where a>0. $|r|<1 \Rightarrow \begin{cases} \frac{1}{4}a-3<1 & \text{if } a>12\\ \frac{1}{4}a-3>-1 & \text{if } a<12 \end{cases}$ (a) Find the common ratio in terms of a. $r=\frac{u_2}{u_1}=\frac{1}{4}a-3$ [2] (b) Find the values of a for which the sum to infinity of the series exists. [3]

- Find the value of a when $S_{\infty} = 76$. $\frac{1}{1 \left(\frac{1}{4}a 3\right)} = 76$ $4 \frac{a}{4} = \frac{1}{76}$ $a = 16 \frac{1}{19} \cong 15.94$ [3]

/ 8 marks Problem 6 (May23 Q6)

The binomial expansion of $(1 + kx)^n$ is given by $1 + 12x + 28k^2x^2 + ... + k^nx^n$ where $n \in \mathbb{Z}^+$ and $k \in \mathbb{O}$.

Find the value of n and the value of k.

 $(1+kx)^n = 1 + nkx + \frac{n(n-1)}{2!}k^2x^2 + \dots + k^nx^n$ then nk = 12 and $\frac{n \times (n-1)}{2} = 28$ The second condition implies $n^2 - n - 56 = 0 \Rightarrow n = -7$ or $\boxed{n = 8}$ (n > 0)The first condition implies $8k = 12 \Rightarrow k = \frac{3}{2}$

Problem 7 / 8 marks

Consider the binomial expansion $(x+1)^7 = x^7 + ax^6 + bx^5 + 35x^4 + ... + 1$ where $x \neq 0$ and $a, b \in \mathbb{Z}^+$

(a)
$$(x+1)^7 = \sum_{k=0}^7 {7 \choose k} x^k \cdot 1^{7-k} = \sum_{k=0}^7 {7 \choose k} x^k$$
. We get the value of b taking $k = 5$: $b = {7 \choose 5} = \boxed{21}$

(b) in other term :
$$\binom{7}{2}x^5 = \frac{\binom{7}{1}x^6 + \binom{7}{3}x^4}{2}$$

 $\Rightarrow 21x^5 = \frac{7x^6 + 35x^4}{2} \Rightarrow 42x^5 - 7x^6 - 35x^4 = 0 \Rightarrow x^2 - 6x + 5 = 0$
 $\Rightarrow (x - 5)(x - 1) = 0 \Rightarrow x \in \{1, 5\}$