

MATHS AA SL

June Exam

PAPER 2

Friday 13 June 2025

Duration: 90 min

7 questions

ANSWERS

Total: / 56 marks

Calculator allowed !

Problem 1

/10 marks]

The following diagram shows a sector ABC of a circle with centre A . The angle $B\hat{A}C$ = 2α , where $0 < \alpha < \frac{\pi}{2}$, and $\hat{OEA} = \frac{\pi}{2}$.

A circle with centre $\, {\rm O} \,$ and radius $\, r \,$ is inscribed in sector $\, {\rm ABC} \, .$

AB and AC are both tangent to the circle at points D and E respectively.

Show that the area of the quadrilateral ADOE is $\frac{r^2}{\tan \alpha}$. [4]

- Find \hat{DOE} in terms of α . (b) (i)
 - (ii) Hence or otherwise, find an expression for the area of R.

[5]

Problem 2 [/9 marks]

Let $f(x) = 2\sin(3x) + 3$ for $x \in \mathbb{R}$

(a) The average hight (or
$$y - \text{shift}$$
) of the curve of equation $y = f(x)$ is $\boxed{3}$

(b) The maximal value of
$$f(x)$$
 is $3+2=5$

-The minimal value of
$$f(x)$$
 is $3-2=\boxed{1}$

(c) Its amplitude is
$$A=2$$

(d) Its periode is
$$T = \frac{2\pi}{3}$$

(e) Its domain is
$$D_f = \mathbb{R}$$
 [1]

(f) The Range of f(x) is define as the set of the possible values y such that y = f(x)

- A value y that is not in the range of
$$f(x)$$
 is for example 0, or 7 [1]

- The range of
$$f(x)$$
 is $R_f = [1,5]$

(g) Let
$$g(x) = 5f(2x) = 5(2\sin(3(2x)) + 3) = 10\sin(6x) + 15$$

in the form $g(x) = 10\sin(bx) + c$ the values of b and c . are : $b = 6$ and $c = 15$ [1]

Problem 3 [/6 marks]

The following diagram shows two buildings situated on level ground.

From point P on the ground directly between the two buildings, the angle of elevation to the top of each building is θ .

diagram not to scale

The distance from point P to point A at the top of the taller building is 150 metres.

The distance from point P to point B at the top of the shorter building is 90 metres.

The distance between $\rm A$ and $\rm B$ is 154 metres.

By cosine rule:
$$\widehat{APB} = \arccos\left(\frac{154^2 - 150^2 - 90^2}{-2 \times 150 \times 90}\right) = \boxed{72.23^0}$$

Find the measure of \widehat{APB} .

(b) Find the height, h, of the taller building.

(a)

Then
$$\theta = \frac{180 - 72.23}{2} = 52.30^{0}$$

$$h = 150 \sin(\theta) = \boxed{118.8m}$$
[3]

Problem 4

The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

(a) On the same axes, sketch the graph of f(-x).

[2]

/6 marks]

(b) Another function, g, can be written in the form $g(x) = a \times f(x+b)$. The following diagram shows the graph of g.

Write down the value of a and of b.

a=-2 b=-1

[4]

1) The area of the shaded region is the difference between the area of the trangle ABC and the area of the circular sector of angle θ . $A = \frac{1}{2}r^2\theta - \frac{1}{2}r^2\sin(\theta) = \frac{1}{2}r^2(\theta - \sin(\theta))$ [4]

where $\theta = \widehat{\text{ACB}}$ in rad C is the center of the circle or rr = 2cm.

2) \blacksquare : $solve\ (\frac{1}{2}2^2(x-\sin(x))-3.4,x,1)$ gives $2.26717 \text{ rad} \implies \theta = 129,90$ [4]

Problem 6 [/9 marks]

A lighthouse, $\,L\,$, is located $\,8\,$ kilometres due East of a coastguard station, $\,C\,$, on a straight stretch of coastline.

The coastguard station sees a Jet Ski, $\rm J$, on a bearing of 062° and at a distance of 5.5 kilometres. This is shown on the following diagram.

diagram not to scale

(a) Find JL. $JL = \sqrt{5.5^2 + 8^2 - 2 \times 5.5 \times 8 \times \sin(90 - 62)} = \sqrt{94.25 - 41.32} = 7.28 \text{km}$ [4]

While travelling due South, the Jet Ski breaks down at point B, before it reaches the coastline. The position of the Jet Ski at B and the lighthouse are shown in the following diagram.

diagram not to scale

From the top of the 60-metre-tall lighthouse, the angle of depression to the Jet Ski at B, is measured to be 0.94° .

(b) Find BL.
$$\frac{60}{BL} = \sin(0.94) \Rightarrow BL = 3675m$$
 [3]

The bearing from the Jet Ski at B to the lighthouse is 121° .

(c) Find the bearing from L to B.
$$380-121=750^0$$
 [2]

Problem 7 [/8 marks]

Let
$$f(x) = \frac{x-2}{2x+1}$$
 and $g(x) = 1 + \frac{2}{x}$

(a) Find the domain of
$$f$$
 and the domain of g [1]

(b) Give the expression of
$$(f \circ g)(x)$$
 [3]

(c) Give the expression of
$$(g \circ f)(x)$$

(d) Solve
$$(f \circ g)(x) = (g \circ f)(x)$$
 [2]

(a) The domain of f is: $D_f = \mathbb{R} \setminus \left\{ -\frac{1}{2} \right\}$ and the domain of g is: $D_f = \mathbb{R} \setminus \{0\} = \mathbb{R}^*$

(b)
$$(f \circ g)(x) = \frac{1 + \frac{2}{x} - 2}{2(1 + \frac{2}{x}) + 1} = \frac{\frac{2}{x} - 1}{\frac{4}{x} + 3} = \frac{2 - x}{4 + 3x}$$

(c)
$$(g \circ f)(x) = 1 + \frac{2}{\frac{x-2}{2x+1}} = 1 + \frac{4x+2}{x-2} = \frac{5x}{x-2}$$

(d)
$$(f \circ g)(x) = (g \circ f)(x) \Leftrightarrow \frac{2-x}{4+3x} = \frac{5x}{x-2} \Leftrightarrow -x^2 + 4x - 4 = 20x + 15x^2$$

 $\Leftrightarrow 16x^2 + 16x + 4 = 0 \Leftrightarrow 4x^2 + 4x + 1 = 0 \quad \Delta = 0$ $x = -\frac{1}{2}$

Bonus: $[\max +8]$

The picture below show two curves

One has equation $y = \pm A\cos(kx) + h$ (where A, k, and h are integers)

The other one has equation $y = \pm B\cos(nx) + j$ (where B, n, and j are integers)

- 1) For each curve, find the minimum, the maximum , the range and the period. [+2]
- 2) Give the values of A, B, k, n, h and j [+3]
- 3) The equation of each curve are: $y = 2\cos(2x) + 8$ and $y = -6\sin(x) + 2$
- **4)** \blacksquare Solve $(2\cos(2x) + 6\sin(x) + 6, x, 10) \Rightarrow x = 10.4422$ [+3]