

MATHS AA SL

June Exam

PAPER 2

.

7 questions

Total:

/ 56 marks

Calculator allowed !

Nom/Name

Friday 13 June 2025

Duration: 90 min

Problem 1 [/10 marks]

The following diagram shows a sector ABC of a circle with centre A . The angle $B\hat{A}C=2\alpha$, where $0<\alpha<\frac{\pi}{2}$, and $O\hat{E}A=\frac{\pi}{2}$.

A circle with centre $\,{\rm O}\,$ and radius $\,r$ is inscribed in sector $\,{\rm ABC}\,$.

AB and AC are both tangent to the circle at points D and E respectively.

diagram not to scale

ii) Hence:

Show that the area of the quadrilateral ADOE is $\frac{r^2}{\tan \alpha}$.

[1]

- (b) (i) Find $D\hat{O}E$ in terms of α .
 - (ii) Hence or otherwise, find an expression for the area of R.

[5]

Problem 2 [/9 marks]

Let $f(x) = 2\sin(3x) + 3$ for $x \in \mathbb{R}$

(a) What is the average hight (or
$$y - \text{shift}$$
) of the curve of equation $y = f(x)$? [1]

(b) –What is the maximal value of
$$f(x)$$
? [1]

-What is the minimal value of
$$f(x)$$
? [1]

(d) What is the period of
$$f(x)$$
? [1]

(e) What is the domain of
$$f(x)$$
?

(f) The Range of f(x) is define as the set of the possible values y such that y = f(x) Based on your answer to (c):

- Give an example of value
$$y$$
 that is not in the range of $f(x)$ [1]

- What is the range of
$$f(x)$$
? [1]

(g) Let g(x) = 5f(2x). The function g can be written in the form $g(x) = 10\sin(bx) + c$ Find the values of b and c.

Problem 3 [/6 marks]

The following diagram shows two buildings situated on level ground.

From point P on the ground directly between the two buildings, the angle of elevation to the top of each building is θ .

diagram not to scale

The distance from point P to point A at the top of the taller building is 150 metres.

The distance from point P to point B at the top of the shorter building is 90 metres.

The distance between \boldsymbol{A} and \boldsymbol{B} is 154 metres.

(a) Find the measure of \hat{APB} .

(b) Find the height, h, of the taller building. [3]

Problem 4

/6 marks]

The following diagram shows the graph of a function f, for $-4 \le x \le 2$.

On the same axes, sketch the graph of f(-x).

[2]

Another function, g , can be written in the form $g(x)=a\times f(x+b)$. The following diagram shows the graph of g .

Write down the value of a and of b.

[4]

Problem 5

/8 marks]

1) Show that the area of the shaded region is given by the formula

$$\mathcal{A} = \frac{1}{2}r^2(\theta - \sin(\theta))$$

where $\theta = \widehat{ACB}$ in rad

C is the center of the circle or r

r = 2 cm.

2) Using solve (\blacksquare), find the value of θ (in radian and in degree) for having $A = 3.4 \text{cm}^2$

[4]

Problem 6

/9 marks |

A lighthouse, $\,L$, is located $\,8\,$ kilometres due East of a coastguard station, $\,C$, on a straight stretch of coastline.

The coastguard station sees a Jet Ski, $\rm J$, on a bearing of 062° and at a distance of 5.5 kilometres. This is shown on the following diagram.

La estación de guardacostas ve una moto acuática J

diagram not to scale

(a) Find JL.

[4]

While travelling due South, the Jet Ski breaks down at point B, before it reaches the coastline. The position of the Jet Ski at B and the lighthouse are shown in the following diagram.

8 km

diagram not to scale

From the top of the 60-metre-tall lighthouse, the angle of depression to the Jet Ski at $B_{\,\cdot}$ is measured to be 0.94° .

(b) Find BL.

[3]

The bearing from the Jet Ski at B to the lighthouse is 121°.

(c) Find the bearing from L to B.

[2]

Problem 7 [/8 marks]

Let
$$f(x) = \frac{x-2}{2x+1}$$
 and $g(x) = 1 + \frac{2}{x}$

(a) Find the domain of
$$f$$
 and the domain of g [1]

(b) Give the expression of
$$(f \circ g)(x)$$
 [3]

(c) Give the expression of
$$(g \circ f)(x)$$
 [2]

(b) Solve
$$(f \circ g)(x) = (g \circ f)(x)$$

Bonus: $[\max +8]$

The picture below show two curves

One has equation $y = \pm A\cos(kx) + h$ (where A, k, and h are integers)

The other one has equation $y = \pm B\cos(nx) + j$ (where B, n, and j are integers)

- 1) For each curve, find the minimum, the maximum, the range and the period. [+2]
- 2) Give the values of A, B, k, n, h and j [+3]
- **3)** Give the *equation* of each curve.
- 4) Using solve (\blacksquare), find the x-coordinate of P the point of intersection shown [+3] on the picture. (you will have chose a smart $guess\ value$)