

MATHS AA SL

June Exam

PAPER I

Friday 13 June 2025

Duration: 90 min

7 questions

Total :	/ 50 marks	Calculator <u>not</u> allowed!	Nom/Name

Problem 1 (may 2025!) [/7 marks] The sum of the first n terms of an arithmetic sequence is given by $S_n = pn^2 - qn$, where p and q are positive constants. It is given that $S_4 = 40$ and $S_5 = 65$. (a) Find the value of p and the value of q. [5] (b) Find the value of u_5 . [2] Problem 2 [/5 marks] The general term of sequence is given by $u_n = \frac{25}{3}(-\frac{2}{5})^n$

i) It that a geometric or arithmetic sequence? [1]

ii) What is the exact expression of u_3 ? [2]

iii) For what value of n, we have $3u_n = 4$? [2]

Problem 3 (may 2023) [/6 marks]

(a) Show that the equation $\cos(2x) = \sin(x)$ can be written in the form $2\sin^2(x) + \sin(x) - 1 = 0$ [1]

(b) Hence, solve cos $(2x) = \sin(x)$, where $-\pi \le x \le \pi$. [5]

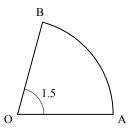
Problem 4 (may 2025!)

[/5 marks]

Points A and B lie on a circle with centre O and radius rcm, where $A\hat{O}B = 1.5$ radians.

This is shown on the following diagram.

diagram not to scale



The area of sector OAB is $48 \, \text{cm}^2$.

(a) Find the value of r.

[3]

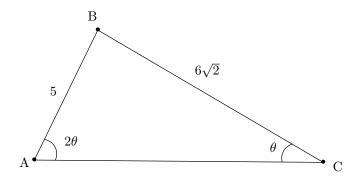
(b) Hence, find the perimeter of sector OAB.

[2]

Problem 5 (may 2025!)

7 marks]

The following diagram shows a non-right angled triangle ABC



 $AB = 5, BC = 6\sqrt{2} \quad \widehat{ACB} = \theta \quad \text{and} \quad \widehat{BAB} = 2\theta \qquad \text{where } 0 < \theta < \frac{\pi}{2}.$

(a) Using the sine rule, show that $\cos \theta = \frac{3\sqrt{2}}{5}$.

[3]

(b) Hence, find $\sin \theta$.

[2]

Point D is loacted on [AC] such that the areau of triangle BCD is $6\sqrt{14}$.

(b) Find DC.

[2]

Problem 6 [/7 marks]

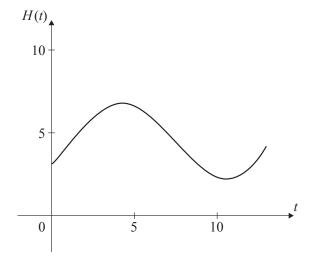
(a) Show that the equation $\sin^2 x = \frac{4-5\cos x}{2}$ may be written in the form $2\cos^2 x - 5\cos x + 2 = 0$.

(b) Hence, solve the equation
$$\sin^2 x = \frac{4 - 5\cos x}{2}$$
 $0 \le x \le 2\pi$. [5]

Problem 7 /13 marks |

The height of water, in metres, in Dungeness harbour is modelled by the function $H(t) = a \sin(b(t-c)) + d$, where t is the number of hours after midnight, and a, b, c and d are constants, where a > 0, b > 0 and c > 0.

The following graph shows the height of the water for 13 hours, starting at midnight.



The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between $2.2\,\mathrm{m}$ and $6.8\,\mathrm{m}$.

All heights are given correct to one decimal place.

(a) Show that
$$b = \frac{\pi}{6}$$
. [1]

(b) Find the value of
$$a$$
. [2]

(c) Find the value of
$$d$$
. [2]

(d) Find the smallest possible value of
$$c$$
. [3]

(f) Determine the number of hours, over a 24-hour period, for which the tide is higher than 5 metres. [3]