

MATHS AA HL

June Exam

PAPER I

Friday 13 June 2025

Duration: 90 min

7 questions

Total : / 50 marks Calculator <u>not</u> allowed !

 $Nom/Name \quad _____$

Problem 1 (HL may 2025!)

/5 marks |

Show that
$$12 \log_x(2) = \frac{12}{\log_2(x)}$$

[1]

Hence solve
$$\log_2(x) = 8 - 12 \log_x(2)$$

[4]

[1]

Problem 2 (*HL may 2025!*)

/7 marks |

(a) Show that
$$4-3\cos(2x)=6\sin^2(x)+1$$

/ I marks

(b) Hence or otherwise solve
$$4-3\cos(4\theta+\frac{2\pi}{3})-9\sin(2\theta+\frac{\pi}{3})=-2$$
, for $0\leq\theta\leq\pi$ [6]

Problem 3 (HL may 2025!)b

/5 marks /

(a) (i) Consider the following equation $2\binom{n}{r} = \binom{n}{r+1}$.

Show that it can be written as 3r + 2 = n.

(ii) Now consider the following equation $7\binom{n}{r-1} = 2\binom{n}{r}$.

Show that it can be written as 9r - 2 = 2n.

Consider the expansion

This part of question was missing; It will be discussed in lass
$$(1+x)^n=1+a_1x+\ldots+a_{k-1}x^{k-1}+a_kx^k+a_{k+1}x^{k+1}+\ldots+x^n$$

Where $a_i \in \mathbb{Q}$ and $k \in \mathbb{Z}$.

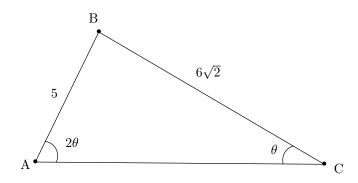
The coefficients of three consecutive terms of the expansion are such that

$$7 imes a_{k-1} = 2 imes a_k \quad ext{ and } \quad 14 imes a_k = 7 imes a_{k+1}$$

Problem 4 (SL may 2025!)

[/7 marks]

The following diagram shows a non-right angled triangle ABC



 $AB = 5, \ BC = 6\sqrt{2} \quad \widehat{ACB} = \theta \quad \text{and} \quad \widehat{BAB} = 2\theta \qquad \text{where } 0 < \theta < \frac{\pi}{2}.$

- (a) Using the sine rule, show that $\cos \theta = \frac{3\sqrt{2}}{5}$. [3]
- (b) Hence, find $\sin \theta$. [2]

Point D is loacted on [AC] such that the areau of triangle BCD is $6\sqrt{14}$.

Problem 5 (JL Nov.2020)

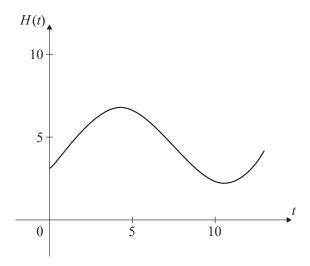
/5 marks

Consider the complex numbers $z_1 = \cos\frac{11\pi}{12} + i\sin\frac{11\pi}{12}$ and $z_2 = \cos\frac{\pi}{6} + i\sin\frac{\pi}{6}$.

- (a) (i) Find $\frac{z_1}{z_2}$
 - (ii) Find $\frac{z_2}{z_1}$ [3]
- (b) 0, $\frac{z_1}{z_2}$ and $\frac{z_2}{z_1}$ are represented by three points O, A and B respectively on an Argand diagram. Determine the area of the triangle OAB. [2]

The height of water, in metres, in Dungeness harbour is modelled by the function $H(t) = a \sin(b(t-c)) + d$, where t is the number of hours after midnight, and a, b, c and d are constants, where a > 0, b > 0 and c > 0.

The following graph shows the height of the water for 13 hours, starting at midnight.



The first high tide occurs at 04:30 and the next high tide occurs 12 hours later. Throughout the day, the height of the water fluctuates between $2.2\,\mathrm{m}$ and $6.8\,\mathrm{m}$.

All heights are given correct to one decimal place.

(a) Show that
$$b = \frac{\pi}{6}$$
. [1]

(b) Find the value of
$$a$$
. [2]

(c) Find the value of
$$d$$
. [2]

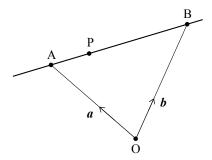
(d) Find the smallest possible value of
$$c$$
. [3]

(f) Determine the number of hours, over a 24-hour period, for which the tide is higher than 5 metres. [3]

Problem 7 (HL Nov 2024)

[/8 marks]

The following diagram shows two points A and B such that $\overrightarrow{OA} = a$, $\overrightarrow{OB} = b$.



The point P lies on (AB) so that $\stackrel{\rightarrow}{AP}=\lambda\stackrel{\rightarrow}{AB}$ where $0<\lambda<1$.

(a) Show that
$$\overrightarrow{OP} = (1 - \lambda)a + \lambda b$$
. [1]

It is given that $|\boldsymbol{a}| = 1$, $|\boldsymbol{b}| = 2$ and $\boldsymbol{a} \cdot \boldsymbol{b} = \frac{1}{4}$.

(b) In the case that $\overset{\rightarrow}{OP}$ is perpendicular to $\overset{\rightarrow}{AB}$, find the value of λ . [7]