

Christmas Examination

Monday 15 Dec. 2025

Duration : 90 min

Maths SL IB₂ Part 1

(8 Problems 83 marks)

ANSWERS

Problem 1

[/ 4 marks]

Consider the function $f(x) = x^2 + 5x - 8$, where $x \in \mathbb{R}$

(a) $f'(x) = 2x + 5 \Rightarrow [f'(1) = 7]$ [2]

(b) The equation of the tangent to the graph of f at $x = 1$. [2]

is $y = ax + b$ with $a = f'(1) = 7$, then $y = 7x + b$

As it passes through $(1, -2)$ then $-2 = 7 + b \Rightarrow b = -9 \Rightarrow [y = 7x - 9]$

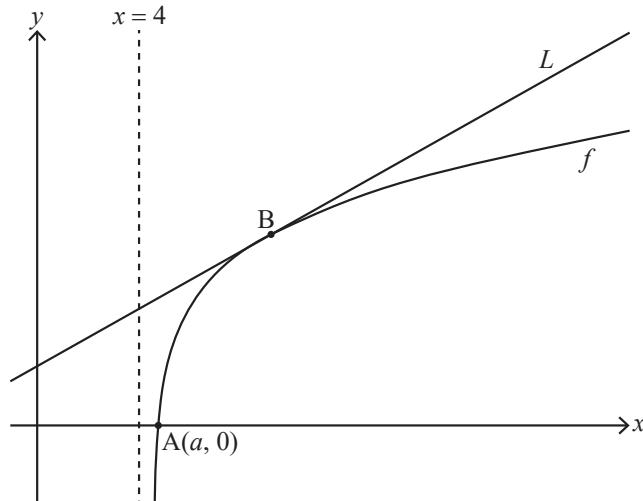
Problem 2 please see next page

Problem 3

[/ 9 marks]

Consider the function f defined by $f(x) = \ln(x^2 - 16)$ for $x > 4$.

The following diagram shows part of the graph of f which crosses the x -axis at point A, with coordinates $(a, 0)$. The line L is the tangent to the graph of f at the point B.



(a) Find the exact value of a . $y = 0$ for $x^2 - 16 = 1 \Rightarrow x = \pm\sqrt{17}$, then $[a = \sqrt{17}]$ [3]

(b) Given that the gradient of L is $\frac{1}{3}$, find the x -coordinate of B. [6]

$$f'(x) = \frac{2x}{x^2 - 16} = \frac{1}{3} \Rightarrow x^2 - 6x - 16 = 0 \quad \Delta = 36 + 64 = 100 \quad x_B = 8 \quad [B: (8, \ln(48))]$$

Problem 2

[/ 4 marks]

The derivative of a function g is given by $g'(x) = \cos x + e^{2x}$, where $x \in \mathbb{R}$.

Given that $g(0) = 7$, find $g(x)$.

$$g(x) = \int (\cos(x) + e^{2x}) dx = \sin(x) + \frac{e^{2x}}{2} + c$$

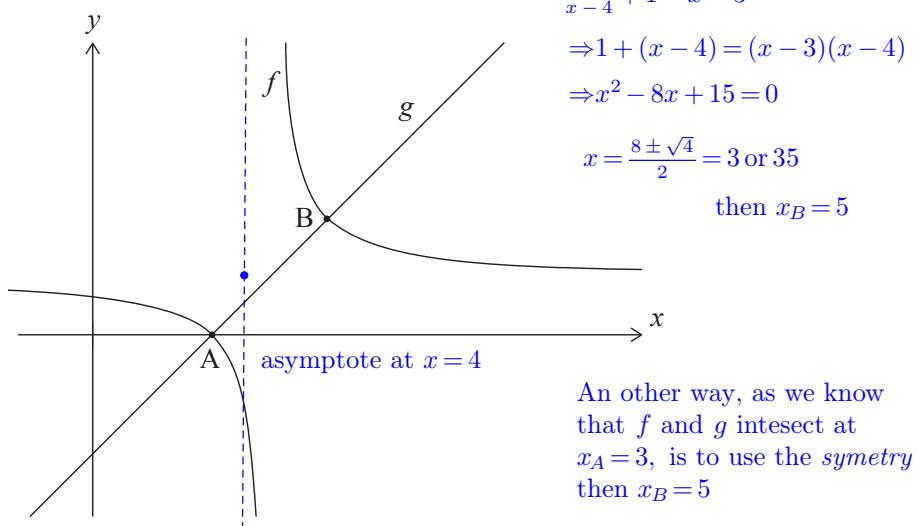
$$\text{As it passes through } (0, 7) \text{ then } 7 = \sin(0) + \frac{e^0}{2} = \frac{1}{2} \Rightarrow c = \frac{13}{2} \Rightarrow g(x) = \sin(x) + \frac{e^{2x}}{2} + \frac{13}{2}$$

Problem 4

[/ 15 marks]

Consider the functions $f(x) = \frac{1}{x-4} + 1$, for $x \neq 4$, and $g(x) = x - 3$ for $x \in \mathbb{R}$.

The following diagram shows the graphs of f and g .

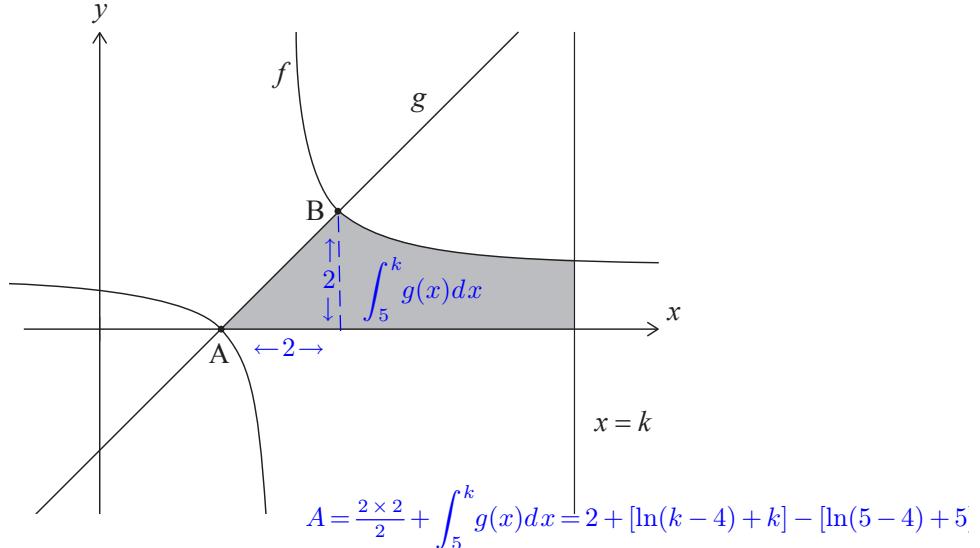


The graphs of f and g intersect at points A and B. The coordinates of A are (3, 0).

(a) Find the coordinates of B. B: (5, 2)

[5]

In the following diagram, the shaded region is enclosed by the graph of f , the graph of g , the x -axis, and the line $x = k$, where $k \in \mathbb{Z}$.



The area of the shaded region can be written as $\ln(p) + 8$, where $p \in \mathbb{Z}$.

(b) Find the value of k and the value of p . $2 + \ln(k-4) + k - 5 = \ln(p) + 8 \Rightarrow k = 11$ and $p = 10$

Problem 5

[/ 17 marks]

The function f is defined by $f(x) = 4^x$, where $x \in \mathbb{R}$

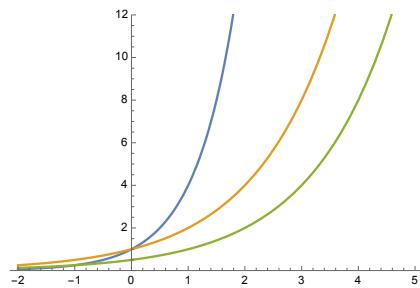
(a) $f^{-1}(x) = \log_4(x)$, hence $f^{-1}(8) = \log_4(3 \times 4) = \log_4(2 \times 4) = \log_4(2) + \log_4(4) = \frac{1}{2} + 1 = \boxed{\frac{3}{2}}$

(b) i) $g(x) = 1 + \log_2(x)$ then $g^{-1}(x) = 2^{x-1}$

ii) Comparing $g^{-1}(x) = 2^{x-1}$ and $f(x) = 4^x = 2^{2x}$ we notice that $f(x) = g(2(x+1))$

that correspond to : – a horizontal **contraction** of factor 2

– a horizontal *translation* to the left, of one unit.



(c) $(f \circ g)(x) = 4^{1+\log_2(x)} = 4 \times 4^{\log_2(x)} = 4 \times (2^2)^{\log_2(x)} = 4 \times 2^{2\log_2(x)} = 4 \times (2^{\log_2(x)})^2 = 4 \times (x)^2 = 4x^2$

(d) The function h is defined by $h(x) = \frac{4x^2}{2x+1}$

(i) $2x - 1 + \frac{1}{2x+1} = \frac{(2x-1)(2x+1) + 1}{2x+1} = \frac{4x^2}{2x+1}$

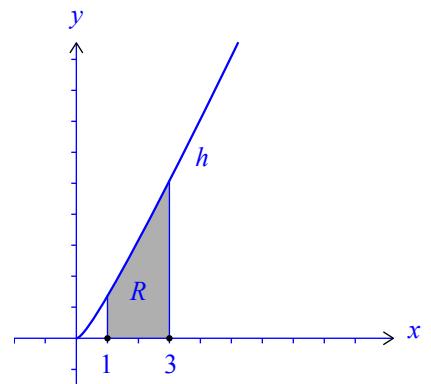
(ii) By (i): $h(x) = 2x - 1 + \frac{1}{2x+1}$

therefore $\int h(x)dx = \int \left(2x - 1 + \frac{1}{2x+1}\right)dx = x^2 - x + \frac{\ln(2x+1)}{2} + c$

$$\Rightarrow R = \int_1^3 \left(2x - 1 + \frac{1}{2x+1}\right)dx = \left[x^2 - x + \frac{\ln(2x+1)}{2} + c\right]_1^3$$

$$= \left(9 - 3 + \frac{\ln(7)}{2} + c\right) - \left(1 - 1 + \frac{\ln(1)}{2} + c\right)$$

$$= \boxed{6 + \frac{\ln(7)}{2}} \quad p = 6, q = \frac{1}{2}, r = 7$$



Problem 6

[/ 16 marks]

A particle P moves along the x -axis. The velocity of P is ms^{-1} at time t seconds, where $v(t) = 4 + 4t - 3t^2$ for $0 \leq t \leq 3$. When $t = 0$, P is at the origin O.

(a) (i) Find the value of t when P reaches its maximum velocity.

(ii) Show that the distance of P from O at this time is $\frac{88}{27}$ metres. [7]

(b) Sketch a graph of v against t , clearly showing any points of intersection with the axes. [4]

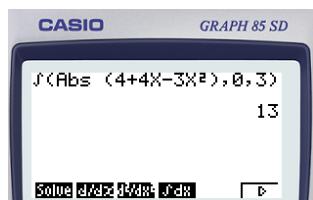
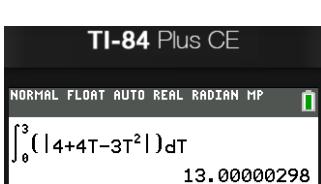
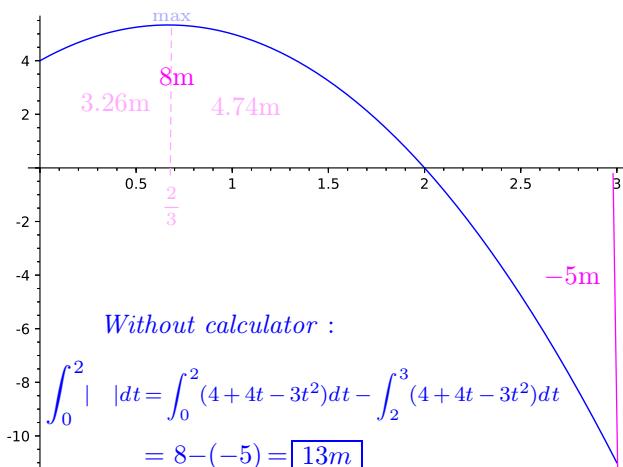
(c) Find the total distance travelled by P . [5]

(a) (i) v is maximum $\Rightarrow a = \frac{dv}{dt} = 0 \Rightarrow -6t + 4 = 0 \Rightarrow \boxed{t = \frac{2}{3}\text{s}}$

(ii) $d_{OP} = \int_0^{\frac{2}{3}} 4 + 4t - 3t^2 dt = \boxed{\frac{88}{27} \cong 3.26\text{m}}$

(b) There is an intersection at $t = 2\text{s}$, hence $v(2) = 0\text{ms}^{-1}$

(c) The total distance traveled by P is $\int_0^2 |4 + 4t - 3t^2| dt$
with calculator



Problem 7

[/ 5 marks]

Box 1 contains 5 red balls and 2 white balls.

Box 2 contains 4 red balls and 3 white balls.

(a) A box is chosen at random and a ball is drawn. Find the probability that the ball is red.

Let A be the event that "box 1 is chosen" and let R be the event that "a red ball is drawn".(b) Determine whether events A and R are independent.

(a) $P(R) = \frac{1}{2} \times \frac{5}{7} + \frac{1}{2} \times \frac{4}{7} = \boxed{\frac{9}{14}}$

[3] (b) $P(R|A) = \frac{P(R \cap A)}{P(A)} = \frac{\frac{1}{2} \times \frac{5}{7}}{\frac{1}{2}} = \boxed{\frac{5}{7}}$

[2] $\Rightarrow \boxed{A, R \text{ not independant}}$ **Problem 8**

[/ 13 marks]

A discrete random variable, X , has the following probability distribution, where $a > 0$ and k is a constant.

x	0	a	$2a$	$3a$
$P(X=x)$	k	$3k^2$	$2k^2$	k^2

(a) Show that $k = \frac{1}{3}$. [5](b) Find $P(X < 3a)$. [2](c) Find $P(X \geq a | X < 3a)$. [3](d) Given that $E(X) = 20$, find the value of a . [3]

(a) $k + 3k^2 + 2k^2 + k^2 = 1 \Rightarrow 6k^2 + k - 1 = 0 \quad \Delta = 25 \quad k = \frac{-1 \pm 5}{12} \quad \text{as } k > 0: k = \frac{4}{12} = \frac{1}{3}$

(b) $P(X < 3a) = k + 5k^2 = \boxed{\frac{8}{9}}$

(c) $P(X \geq 2a | X < 3a) = \frac{P(X \geq 2a \cap X < 3a)}{P(X < 3a)} = \frac{P(X = 2a)}{P(X < 3a)} = \frac{2k^2}{k + 5k^2} = \frac{\frac{2}{9}}{\frac{8}{9}} = \frac{2}{8} = \boxed{\frac{1}{4}}$

(d) $E(X) = k \times 0 + 3k^2a + 2k^22a + k^23a = 10ak^2 = 20 \quad \text{with } k = \frac{1}{3} \quad \text{then } \boxed{a = 18}$