

Christmas Examination

Maths SL IB₂ Part 2

(8 Problems 52 marks)

Monday 15 Dec. 2025

Duration : 90 min

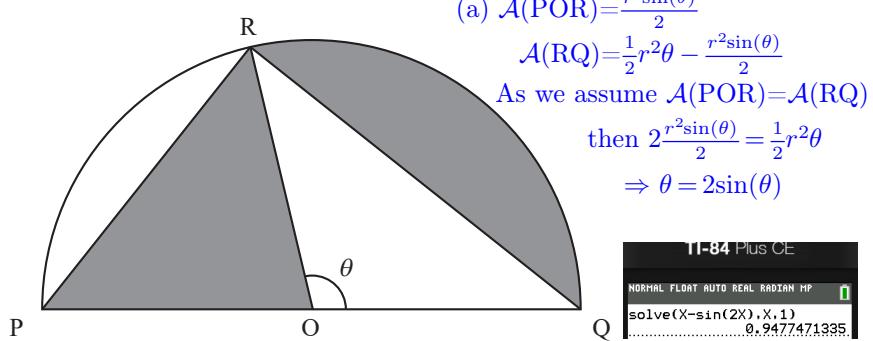
ANSWERS

A calculator is allowed for this second part

Problem 1

[/ 6 marks]

The following diagram shows a semicircle with centre O and radius r. Points P, Q and R lie on the circumference of the circle, such that PQ = 2r and $\hat{ROQ} = \theta$, where $0 < \theta < \pi$.



- (a) Given that the areas of the two shaded regions are equal, show that $\theta = 2 \sin \theta$. [5]
(b) Hence determine the value of θ . [using a calculator (only !) : $\theta \cong 0.947 \text{ rad} \cong 54.3^\circ$] [1]

Problem 2

[/ 5 marks]

Geometric sequence with $u_1 = 50$ $u_4 = 864$ hence $r^3 = \frac{864}{50} \Rightarrow r = 1.2$

$$S_n = u_1 \frac{1-r^n}{1-r} > 33500 \Leftrightarrow 50 \frac{1-r^n}{1-r} > 33500 \Leftrightarrow \frac{1-r^n}{1-r} > 670 \Leftrightarrow \frac{1-r^n}{1-r} > 670 \Leftrightarrow 1-r^n > 670(1-r)$$

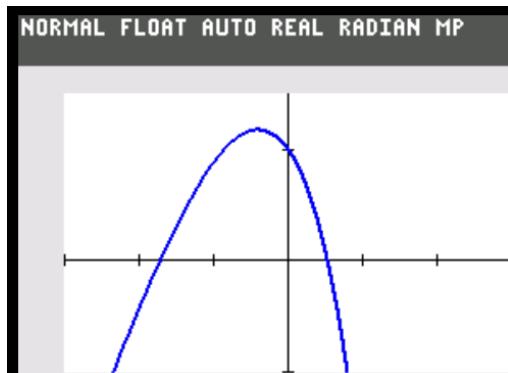
$$\Leftrightarrow r^n > 1 + 670(0.2) = 135 \quad \log_{1.2}(135) = 26.9 \quad \Rightarrow [n = 27]$$

Problem 3

[/ 6 marks]

$$f'(x) = 4 + 2x - 3e^x \quad \text{where } x \in \mathbb{R}$$

(a) f increasing $\Leftrightarrow f'(x) > 0$



The figure shows the curve of $y = f'(x)$.

```

solve(4+2X-3e^X,X,1)
0.5179997139.

solve(4+2X-3e^X,X,-2)
-1.73554346.

```

Therefor f increasing for $-1.7355 < x < 0.5179997139$

(b) $f''(x) = 2 - 3e^x$ the curve of f is concave-up if $f''(x) < 0$

$$\Leftrightarrow 2 - 3e^x < 0$$

$$\Leftrightarrow 2 < 3e^x \quad \Leftrightarrow e^x > \frac{2}{3} \quad \Leftrightarrow \boxed{x > \ln\left(\frac{2}{3}\right) = -0.405}$$

Problem 4

[/ 5 marks]

Consider the function $f(x) = e^{-x^2} - 0.5$, for $-2 \leq x \leq 2$.

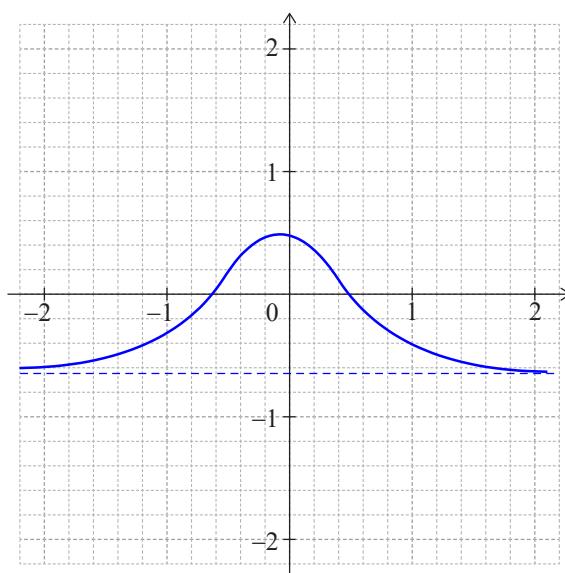
(a) Find the values of x for which $f(x) = 0$.

[2]

(b) Sketch the graph of f on the following grid.

[3]

(b) graph



(a) $f(x) = 0$
 $\Leftrightarrow e^{-x^2} = \frac{1}{2}$
 $\Leftrightarrow -x^2 = -\ln(2)$
 $\Leftrightarrow x = \sqrt{\ln(2)}$
 $\cong 0.83$

Problem 5

[/ 7 marks]

$$f(x) = \frac{(2x+a)^3}{(x+5)^2} \quad \text{where } x \neq -5 \quad \text{and } a \in \mathbb{R}^+.$$

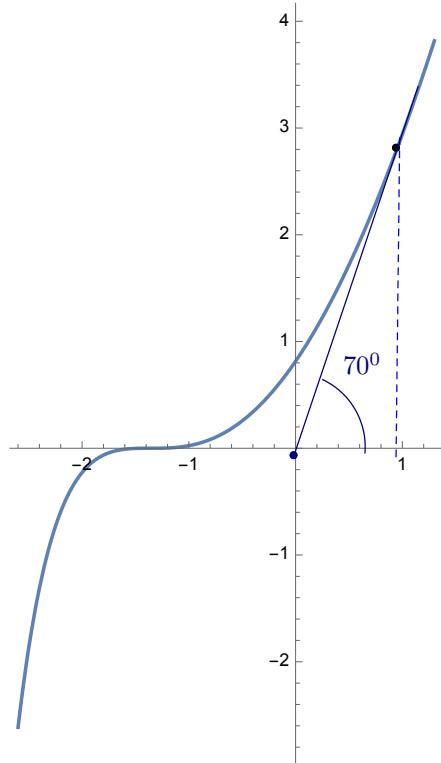
$$\begin{aligned}
 (a) \quad f'(x) &= \frac{3(2x+a)^2 \cdot 2 \cdot (x+5)^2 - (2x+a)^3 \cdot 2 \cdot (x+5)}{((x+5)^2)^2} = \frac{6(2x+a)^2(x+5)^2 - 2(2x+a)^3 \cdot (x+5)}{(x+5)^4} \\
 &= \frac{6(2x+a)^2(x+5) - 2(2x+a)^3}{(x+5)^3} = \frac{(2x+a)^2(6(x+5) - 2(2x+a))}{(x+5)^3} = \boxed{\frac{(2x+a)^2(2x+30-2a)}{(x+5)^3}}
 \end{aligned}$$

(b) The two possible values of a for having a tangent at $x=1$ with an angle of 70°

are solutions of $f'(x) = \tan(70^\circ) \cong 2.75$

$$\text{Then } (2x+a)^2(2x+30-2a) = 2.75(x+5)^3 \quad \text{when } x=1$$

$$\text{that is : } (2+a)^2(32-2a) = 2.75 \cdot 6^3 = 593.5 \quad \Rightarrow \boxed{a = 2.7306}$$



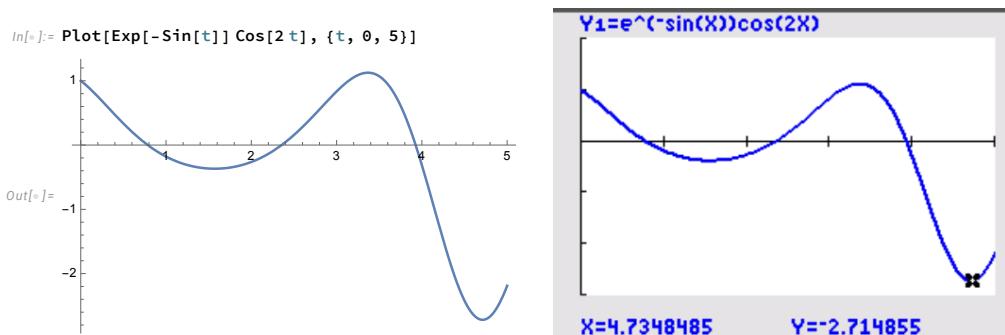
Problem 6

[/ 7 marks]

A particle P moves in a line. Its velocity is $v(t) = e^{-\sin(t)} \cos(2t)$ for $0 \leq t \leq 5$ s.

(a) The maximum speed of P is solution of $\frac{dv}{dt} = 0$

But first let us look how is the curve of $v(t)$:



As we want the maximum speed (speed is absolute value of velocity)

we can see that its correspond to the minimum velocity. That is for t near to 4.71 s.

We can use the solver (here $Y_1 = v(x)$) to find the zero of the derivative

```

solve(  $\frac{d}{dx}(Y_1)|_{x=x}, X, 1$  )
..... 1.570796327.
solve(  $\frac{d}{dx}(Y_1)|_{x=x}, X, 3$  )
..... 3.368273513.
solve(  $\frac{d}{dx}(Y_1)|_{x=x}, X, 5$  )
..... 4.71238898.

```

According to the graph, only the last result is the correct one : maximum speed for $t = 4.7124$ s

$Y_1(4.71238898)$

At that time : -2.718281828 \Rightarrow max speed is 2.7173 ms^{-1}

(b) Total distance travelled = $\int_0^5 |v(t)| dt$

```

.....  $\int_0^5 (|Y_1|) dx$ 
..... 3.845920022.

```

(c) The acceleration changes for the second time near $t = 2, 3$ sec, more precisely:

```

solve(  $Y_1, X, 2$  )
..... 2.35619449.

```

At that particular time, the acceleration is $a = 0.986 \text{ ms}^{-2}$

```

.....  $\frac{d}{dx}(Y_1)|_{x=2.35619449}$ 
..... 0.9861373203.

```

Problem 7

[/ 8 marks]

State two conditions required for X to be modeled by a binomial distribution.

Fixed number of trials

Each trial has *two* possible outcomes

The outcome of each trial is *independent* of all the others (*constant* probability of success)

(b) $1900 \times 0.37 = \boxed{703 \text{ people}}$

(c) (i) Let D be the number of people who will ride *Daifong*

$$P(D = 712) = \boxed{0.0172556\dots}$$

(ii) $P(D \leq 712) = \boxed{0.674739\dots}$

$$P(D \leq 683) = 0.177146\dots$$

$$P(684 \leq D \leq 712) = \boxed{0.497593\dots}$$

That would be interesting to continue this question, looking at Paper 2 May 2025 tz3

(d) $P(\leq D \leq 692 | 684 \leq D \leq 712) = \frac{P(684 \leq D \leq 692)}{P(684 \leq D \leq 712)} = \frac{0.132318}{0.497593} = \boxed{0.266}$

Problem 8

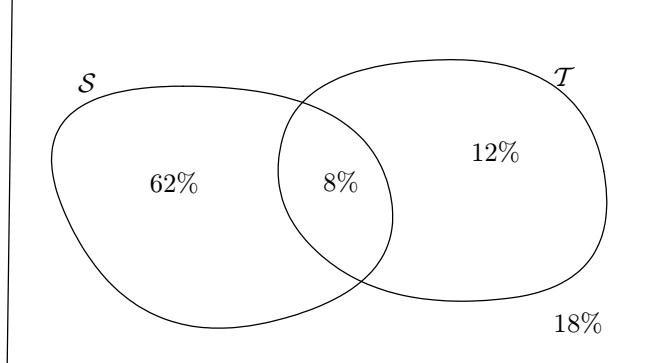
[/ 8 marks]

a) See the diagram

b) $P(S \cap T^*) = 12\%$

c) $P(G \cap T) = P(G)P(T|G)$
 $= 0.48 \times 0.25 = 12\%$

d) $P(T|G) \neq P(T) \Rightarrow \text{not independent.}$
 $P(T \cap G) \neq P(T)P(G) \Rightarrow \text{not indep!}$

**Bonus**

[+ 6]

Let us consider the function

$$f(x) = \frac{1}{\ln(2x - x^2)}$$

i) The *domain* of f is $\mathbb{R} \setminus \{1\}$

ii) The curve of equation $y = f(x)$ is shown ...

iii) The equation of the *vertical* asymptote: $\boxed{x = 1}$

iv) The equation of the *horizontal* asymptote: $\boxed{y = 0}$

