PreTest 4b

subject: Trigonometry I

Tuesday 22 Jan 2025

Mathematics - IB_1 -

Total: / 36 marks ANSWERS

Problem 1

Assuming θ is in the fourth sector, and $\sin(\theta) = -\sqrt{\frac{3}{7}}$, give the exact expression for

i)
$$\cos(\theta)$$
,

ii)
$$tan(\theta)$$
.

ii)
$$tan(\theta)$$
, iii) $cos(2\theta)$, iv) $sin(2\theta)$,

$$\mathbf{v}$$
) $\tan(2\theta)$

$$\mathbf{i)} \sqrt{\frac{4}{7}} = 2\frac{\sqrt{7}}{7}$$

ii)
$$-\frac{\sqrt{3}}{2}$$

iii)
$$\frac{1}{7}$$

i)
$$\sqrt{\frac{4}{7}} = 2\frac{\sqrt{7}}{7}$$
 ii) $-\frac{\sqrt{3}}{2}$ iii) $\frac{1}{7}$ iv) $2\left(-\sqrt{\frac{3}{7}}\right)\left(\sqrt{\frac{4}{7}}\right) = -\frac{4\sqrt{3}}{7}$ v) $-4\sqrt{3}$

$$\mathbf{v}) \boxed{-4\sqrt{3}}$$

Problem 2 (without calculator)

[13 marks]

We consider the following trigonometric equations:

1)
$$\sin(3x) = \frac{\sqrt{2}}{2}$$
 for $0 \le x < 360^{\circ}$

[4 marks]

As $\frac{\sqrt{2}}{2} > 0$, then angle 3x is either in the first or in the second sector.

In the $\mathit{first}: \ \ 3x = 45 + k \, 360 \Rightarrow \boxed{x = 15 + k \, 120}$ in the $\mathit{second}: 3x = 135 + k \, 360$ $\boxed{x = 45 + k \, 120}$

that means $15^{\circ}, 45^{\circ}, 135^{\circ}, 165^{\circ}, 255^{\circ} \text{ and } 2^{\circ}$ are six distinct solutions between 0 and 360°

2)
$$\cos(4x) = \frac{\sqrt{3}}{2}$$
 for $0 \le x < 2\pi$ (radian)

[4 marks]

$$4x = \frac{\pi}{6} \qquad (+2k\pi)$$

$$4x = \frac{\pi}{6}$$
 $(+2k\pi)$ or $4x = \frac{5\pi}{6}$ $(+2k\pi)$

$$\Rightarrow x = \boxed{\frac{\pi}{24} + k \frac{\pi}{2}}$$

$$\Rightarrow x = \boxed{\frac{\pi}{24} + k\frac{\pi}{2}} \qquad \text{or} \qquad x = \boxed{\frac{5\pi}{24} + k\frac{\pi}{2}}$$

therefore $S = \left\{ \frac{\pi}{24}, \frac{5\pi}{24}, \frac{13\pi}{24}, \frac{17\pi}{24}, \frac{25\pi}{24}, \frac{29\pi}{24}, \frac{37\pi}{24}, \frac{41\pi}{24} \right\}$: height distinct solutions between 0 and 2π

3)
$$6\cos\left(2x\right)-4\cos^2\left(x\right)=0$$
 , for $0\leqslant x<3\pi$ (radian)

[5 marks]

$$S = \left\{ \, \frac{\pi}{6} + 2 \, \pi \, k \, \right\} \, \cup \, \left\{ \frac{5\pi}{6} + 2 \, \pi \, k \, \right\} \, \cup \, \left\{ \frac{7\pi}{6} + 2 \, \pi \, k \, \right\} \, \cup \, \left\{ \frac{11\pi}{6} + 2 \, \pi \, k \, \right\}$$

As we want only $0 \leqslant x < 3\pi$, we get : $S = \left\{ \frac{\pi}{6}, \frac{5\pi}{6}, \frac{7\pi}{6}, \frac{11\pi}{6}, \frac{13\pi}{6}, \frac{17\pi}{6} \right\}$

Problem 3 (with calculator)

[8 marks]

Consider the trigonometric equation $5\cos(2\theta) = 3(\cos(\theta) + 1) - 4$

i) It can be written as

$$a\cos^{2}(\theta) + b\cos(\theta) + c = 0$$
 (=10\cos^{2}(\theta) - 3\cos(\theta) - 4)

[4 marks]

with
$$a = 10, \ b = -3, \ c = -4, \ \Delta = 49$$
 $x = \frac{-3 \pm 7}{20}$

ii) The set S of solutions of this equation, for $0 \le x < 2\pi$ (radian) is

[4 marks]

$$S = \left\{ \frac{\pi}{3} + 2\pi k \right\} \, \cup \, \left\{ \frac{5\pi}{3} + 2\pi k \right\} \, \cup \, \left\{ \frac{5\pi}{3} + 2\pi k \right\} \, \cup \, \left\{ \arccos\left(\frac{1}{5}\right) + 2\pi k \right\} \, \cup \, \left\{ 2\pi - \arccos\left(\frac{1}{5}\right) + 2\pi k \right\}$$