PreTest 4

subject: Trigonometry I

For solving these problems, you could have to use the following trigonometric identities

$$\cos^2(x) + \sin^2(x) = 1 \qquad \sin(2x) = 2\sin(x)\cos(x)$$
$$\tan(x) = \frac{\sin(x)}{\cos(x)} \qquad \cos(2x) = \cos^2(x) - \sin^2(x)$$

Problem 1 [6 marks]

- 1) What is the exact value of $\cos(\frac{\pi}{6})$?
- 2) What relation in the frame above provides for any α an expression for $\sin(\alpha)$ in terms of $\cos(\alpha)$?
- 3) Assuming $\sin(\theta) = \frac{4}{5}$, give two possible values for $\cos(\theta)$ and two possible values for $\tan(\theta)$.

Problem 2 [10 marks]

- 1) Assuming θ is in the *second* sector, and $\sin(\theta) = \frac{15}{17}$, give the exact expression for
 - i) $\cos(\theta)$, ii) $\cos(2\theta)$, iii) $\sin(2\theta)$, iv) $\tan(\theta)$, v) $\tan(2\theta)$
- 2) Assuming θ is in the *third* sector, and $\tan(\theta) = \sqrt{\frac{17}{8}}$, give the exact expression for
 - i) $\cos(\theta)$, ii) $\sin(\theta)$, iii) $\cos(2\theta)$, iv) $\sin(2\theta)$, v) $\tan(2\theta)$

Problem 3 [16 marks]

Solve the following trigonometric equations: (please give all the values in rad)

1)
$$\cos(x) = \frac{1}{2}$$
 [1 marks]

2)
$$\cos(2x) = \frac{1}{2}$$
 [2 marks]

$$3) \sin(x) = \frac{\sqrt{2}}{2}$$
 [1 marks]

$$4) \sin(4x) = \frac{\sqrt{2}}{2}$$
 [2 marks]

5)
$$2\cos(x)^2 - 3\sin(x) = 0$$
 [3 marks]

6)
$$6\cos x - 4\sin^2 x = 0$$
, for $0 \le x < 3\pi$ (radian) [3 marks]

Problem 4 (IB!!) [8 marks]

Consider the trigonometric equation $3\cos(2\theta) + 4\cos(\theta) + 5 = -1$

i) Show it can be written as
$$a\cos^2(\theta) + b\cos(\theta) + c = 0 \qquad (find a, b, c) \qquad [4 \text{ marks}]$$

ii) Hence find the solutions of this equation, for $0 \le x < 2\pi$ (radian) [4 marks]