## Answers to Problem 1

- (a) An  $\alpha$  particle is a nucleous of helium  ${}_{2}^{4}$ He.
- (b) B repulsion ( same charge ) ectrons would be deflected by the electrons of the gold atom, and for this reason they would not even reach ( and then collide ) the nucleous !
- (c) (i) The half-life period  $T_{\frac{1}{2}}$  is the time that must elapse:
  - the <u>initial number of radioactive nuclei</u>  $(N_0)$  to be reduced by a factor of 2
  - the initial activity of the radioactive sample  $(A_0)$  to be reduced by a factor of 2

Notice: You can chose your definition either in terms of number (N) or activity (A).

That is because N and A are proportional (to each other).

- (ii)  ${}^{238}_{92}U \longrightarrow {}^{234}_{90}\text{Th} + {}^{4}_{2}\alpha$
- (d) (i) We have to realize that 3 half-lives have gone by, therefore the age is  $3T_{\frac{1}{2}} = 1.4 \times 10^{10}$  years.
  - (ii) We assume that no lead (none of the intervening daughters) was lost from the rocks.